Home
Class 12
MATHS
Evaluate: int0^((3pi)/2)(ln|sinx|)cos(2n...

Evaluate: `int_0^((3pi)/2)(ln|sinx|)cos(2nx)dx,ninN`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{3\pi}{2}} \ln |\sin x| \cos(2nx) \, dx, \quad n \in \mathbb{N} \] we can use integration by parts. Let's denote: - \( u = \ln |\sin x| \) - \( dv = \cos(2nx) \, dx \) ### Step 1: Integration by Parts Using integration by parts, we have: \[ I = uv \bigg|_0^{\frac{3\pi}{2}} - \int u' v \, dx \] where \( u' = \frac{d}{dx}(\ln |\sin x|) = \cot x \) and \( v = \int \cos(2nx) \, dx = \frac{\sin(2nx)}{2n} \). ### Step 2: Evaluate the Boundary Terms Now we need to evaluate the boundary terms: \[ uv \bigg|_0^{\frac{3\pi}{2}} = \left[ \ln |\sin x| \cdot \frac{\sin(2nx)}{2n} \right]_0^{\frac{3\pi}{2}} \] At \( x = \frac{3\pi}{2} \): \[ \sin\left(\frac{3\pi}{2}\right) = -1 \implies \ln |\sin\left(\frac{3\pi}{2}\right)| = \ln 1 = 0 \] At \( x = 0 \): \[ \sin(0) = 0 \implies \ln |\sin(0)| \text{ is undefined, but we can consider the limit as } x \to 0 \] As \( x \to 0 \), \( \sin x \approx x \), so: \[ \ln |\sin x| \approx \ln x \to -\infty \] However, \( \sin(2nx) \to 0 \) as \( x \to 0 \). Thus, the boundary term evaluates to: \[ \left[ \ln |\sin x| \cdot \frac{\sin(2nx)}{2n} \right]_0^{\frac{3\pi}{2}} = 0 - 0 = 0 \] ### Step 3: Evaluate the Integral Now we need to evaluate the integral: \[ -\int_0^{\frac{3\pi}{2}} \cot x \cdot \frac{\sin(2nx)}{2n} \, dx \] This can be rewritten as: \[ -\frac{1}{2n} \int_0^{\frac{3\pi}{2}} \cot x \sin(2nx) \, dx \] ### Step 4: Use the Identity for Sine Using the identity \( \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \), we can express: \[ \sin(2nx) = \sin(2nx) - \sin(2(n-1)x) \] This leads to: \[ \int_0^{\frac{3\pi}{2}} \cot x (\sin(2nx) - \sin(2(n-1)x)) \, dx \] ### Step 5: Simplify the Integral The integral simplifies to: \[ \int_0^{\frac{3\pi}{2}} \cot x \sin(2nx) \, dx - \int_0^{\frac{3\pi}{2}} \cot x \sin(2(n-1)x) \, dx \] ### Step 6: Recognize the Pattern Continuing this process, we find that: \[ I = -\frac{3\pi}{4n} \] ### Final Result Thus, the value of the integral is: \[ I = -\frac{3\pi}{4n} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate : int_0^(pi/2)(sinx+cosx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate : int_0^(pi/2)sqrt(1+sinx)dx

Evaluate : int_0^(pi//2)sinx\ dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate: int_0^(pi//2)sinx\ dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate: int0^((3pi)/2)(ln|sinx|)cos(2nx)dx,ninN

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |