Home
Class 12
MATHS
Evaluate int(0)^(infty)e^(-x) sin^(n) x...

Evaluate ` int_(0)^(infty)e^(-x) sin^(n) x dx, if n` is an even integer.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I_n = \int_0^{\infty} e^{-x} \sin^n x \, dx \) for even integers \( n \), we can follow these steps: ### Step 1: Define the Integral Let \( I_n = \int_0^{\infty} e^{-x} \sin^n x \, dx \). ### Step 2: Use Integration by Parts We can use integration by parts where we let: - \( u = \sin^{n-1} x \) - \( dv = e^{-x} \sin x \, dx \) Then, we differentiate and integrate: - \( du = (n-1) \sin^{n-2} x \cos x \, dx \) - \( v = -e^{-x} \sin x \) ### Step 3: Apply Integration by Parts Using integration by parts, we have: \[ I_n = \left[ -e^{-x} \sin^{n-1} x \right]_0^{\infty} + (n-1) \int_0^{\infty} e^{-x} \sin^{n-2} x \cos x \, dx \] The boundary term evaluates to zero, so: \[ I_n = (n-1) \int_0^{\infty} e^{-x} \sin^{n-2} x \cos x \, dx \] ### Step 4: Simplify the Integral Now, we can express the integral in terms of \( I_{n-2} \): \[ I_n = (n-1) \left( \int_0^{\infty} e^{-x} \sin^{n-2} x \cos x \, dx \right) \] ### Step 5: Repeat the Process We can repeat the integration by parts process, reducing the power of sine until we reach \( I_0 \) or \( I_2 \). For \( n = 2 \): \[ I_2 = \int_0^{\infty} e^{-x} \sin^2 x \, dx \] Using the identity \( \sin^2 x = \frac{1 - \cos 2x}{2} \): \[ I_2 = \frac{1}{2} \int_0^{\infty} e^{-x} \, dx - \frac{1}{2} \int_0^{\infty} e^{-x} \cos 2x \, dx \] The first integral evaluates to \( \frac{1}{2} \) and the second integral can be evaluated using the formula: \[ \int_0^{\infty} e^{-ax} \cos bx \, dx = \frac{a}{a^2 + b^2} \] Thus, \[ \int_0^{\infty} e^{-x} \cos 2x \, dx = \frac{1}{1^2 + 2^2} = \frac{1}{5} \] So, \[ I_2 = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{2} - \frac{1}{10} = \frac{5}{10} - \frac{1}{10} = \frac{4}{10} = \frac{2}{5} \] ### Step 6: Generalize the Result Continuing this process for higher even integers, we can derive a general formula: \[ I_n = \frac{n!}{2^n} \cdot \frac{1}{n^2 + 1} \] ### Final Result Thus, the final result for the integral \( I_n \) when \( n \) is an even integer is: \[ I_n = \frac{n!}{2^n(n^2 + 1)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(infty) e^(-x)x^(3)dx .

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(infty)(lnxdx)/(x^(2)+2x+4)

Evaluate: int_(0)^(pi) e^(2x) sin ((pi)/(4) + x)dx

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

Evaluate : int_( (dx)/(e^(x)+e^(-x)) )

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate: int_0^1x(1-x)^n dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |