Home
Class 12
MATHS
Evaluate int(0)^(1)(tx+1-x)^(n)dx, wh...

Evaluate `int_(0)^(1)(tx+1-x)^(n)dx`, where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^1 (tx + 1 - x)^n \, dx, \] where \( n \) is a positive integer and \( t \) is a parameter independent of \( x \), we can follow the steps below: ### Step 1: Rewrite the Integral We can rewrite the expression inside the integral: \[ I = \int_0^1 (tx + (1 - x))^n \, dx = \int_0^1 ((t - 1)x + 1)^n \, dx. \] ### Step 2: Use the Binomial Theorem Using the binomial theorem, we can expand \(((t - 1)x + 1)^n\): \[ I = \int_0^1 \sum_{k=0}^{n} \binom{n}{k} (t - 1)^k x^k \, dx. \] ### Step 3: Interchange the Integral and Summation We can interchange the integral and summation (justified by uniform convergence): \[ I = \sum_{k=0}^{n} \binom{n}{k} (t - 1)^k \int_0^1 x^k \, dx. \] ### Step 4: Evaluate the Integral The integral \(\int_0^1 x^k \, dx\) can be evaluated as: \[ \int_0^1 x^k \, dx = \frac{1}{k+1}. \] ### Step 5: Substitute Back Substituting this result back into the expression for \( I \): \[ I = \sum_{k=0}^{n} \binom{n}{k} (t - 1)^k \cdot \frac{1}{k+1}. \] ### Step 6: Simplify the Expression We can express this sum in a more compact form. Notice that: \[ I = \frac{1}{n+1} \sum_{k=0}^{n} \binom{n}{k} (t - 1)^k. \] ### Step 7: Use the Binomial Theorem Again Using the binomial theorem again, we have: \[ \sum_{k=0}^{n} \binom{n}{k} (t - 1)^k = (1 + (t - 1))^n = t^n. \] ### Step 8: Final Expression for \( I \) Thus, we can write: \[ I = \frac{t^n}{n+1}. \] ### Step 9: Show the Required Result Now, we need to show that: \[ \int_0^1 x^k (1-x)^{n-k} \, dx = \frac{1}{n+1} \binom{n}{k}. \] Using the result from \( I \): \[ \int_0^1 x^k (1-x)^{n-k} \, dx = \frac{1}{n+1} \cdot \binom{n}{k}, \] which matches the required form. ### Conclusion The value of \( P \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate: int_0^1x(1-x)^n dx

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

Evaluate: int n. x^(n-1) ." cos " x^(n) " dx "

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(0)^(1)(tx+1-x)^(n)dx, where n is a positive integer a...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |