Home
Class 12
MATHS
int(0)^(1) (sin theta (cos^(2) theta- co...

`int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{\sin \theta \left( \cos^2 \theta - \cos^2 \frac{\pi}{5} \right) \left( \cos^2 \theta - \cos^2 \frac{2\pi}{5} \right)}{\sin 5\theta} \, d\theta, \] we can use a trigonometric identity and some algebraic manipulations. ### Step 1: Use the identity for \(\sin 5\theta\) We know that: \[ \sin 5\theta = 16 \sin \theta \cos^4 \theta - 20 \sin \theta \cos^2 \theta + 5 \sin \theta. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{\sin \theta \left( \cos^2 \theta - \cos^2 \frac{\pi}{5} \right) \left( \cos^2 \theta - \cos^2 \frac{2\pi}{5} \right)}{16 \sin \theta \cos^4 \theta - 20 \sin \theta \cos^2 \theta + 5 \sin \theta} \, d\theta. \] ### Step 2: Simplify the integral Since \(\sin \theta\) is common in the numerator and denominator, we can cancel it out (for \(\theta \neq 0\)): \[ I = \int_{0}^{1} \frac{\left( \cos^2 \theta - \cos^2 \frac{\pi}{5} \right) \left( \cos^2 \theta - \cos^2 \frac{2\pi}{5} \right)}{16 \cos^4 \theta - 20 \cos^2 \theta + 5} \, d\theta. \] ### Step 3: Evaluate the integral Now, we can evaluate the integral. The integral simplifies to: \[ I = \frac{1}{16} \int_{0}^{1} d\theta = \frac{1}{16} \cdot (1 - 0) = \frac{1}{16}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{1}{16}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}| theta in (0,pi//2), then roots of f(x)=0 are

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

Let f beintegrable over [0,a] for any real value of a . If I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta and I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta , then

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. int(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |