Home
Class 12
MATHS
Show that lim(nrarr infty) sum(k=0)^(n)(...

Show that `lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{k=0}^{n} \frac{{n \choose k}}{n^k (k+3)} = e - 2, \] we will follow a series of steps to manipulate the expression and evaluate the limit. ### Step 1: Rewrite the summation We start by rewriting the summation in a more manageable form. We can express the term \(\frac{1}{k+3}\) as an integral: \[ \frac{1}{k+3} = \int_0^1 x^{k+2} \, dx. \] Thus, we can rewrite the original limit as: \[ \lim_{n \to \infty} \sum_{k=0}^{n} \frac{{n \choose k}}{n^k} \int_0^1 x^{k+2} \, dx. \] ### Step 2: Interchange summation and integration We can interchange the summation and the integral (justified by Fubini's theorem): \[ \lim_{n \to \infty} \int_0^1 x^{2} \sum_{k=0}^{n} \frac{{n \choose k}}{n^k} x^k \, dx. \] ### Step 3: Simplify the summation The summation \(\sum_{k=0}^{n} {n \choose k} \left(\frac{x}{n}\right)^k\) can be recognized as the binomial expansion: \[ \sum_{k=0}^{n} {n \choose k} \left(\frac{x}{n}\right)^k = \left(1 + \frac{x}{n}\right)^n. \] Thus, we can rewrite our limit as: \[ \lim_{n \to \infty} \int_0^1 x^{2} \left(1 + \frac{x}{n}\right)^n \, dx. \] ### Step 4: Evaluate the limit As \(n \to \infty\), \(\left(1 + \frac{x}{n}\right)^n\) approaches \(e^x\). Therefore, we have: \[ \lim_{n \to \infty} \int_0^1 x^{2} e^x \, dx. \] ### Step 5: Calculate the integral Now we need to compute the integral: \[ \int_0^1 x^{2} e^x \, dx. \] We can use integration by parts. Let \(u = x^2\) and \(dv = e^x dx\). Then \(du = 2x dx\) and \(v = e^x\). Applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int_0^1 x^2 e^x \, dx = \left[ x^2 e^x \right]_0^1 - \int_0^1 e^x (2x) \, dx. \] Evaluating the boundary term: \[ \left[ x^2 e^x \right]_0^1 = 1^2 e^1 - 0 = e. \] Now we need to compute \(\int_0^1 2x e^x \, dx\) using integration by parts again. Let \(u = 2x\) and \(dv = e^x dx\). Then \(du = 2 dx\) and \(v = e^x\): \[ \int 2x e^x \, dx = 2 \left[ x e^x \right]_0^1 - \int_0^1 2 e^x \, dx. \] Evaluating the boundary term: \[ 2 \left[ x e^x \right]_0^1 = 2(e - 0) = 2e. \] Now, we compute \(\int_0^1 2 e^x \, dx\): \[ \int_0^1 2 e^x \, dx = 2 \left[ e^x \right]_0^1 = 2(e - 1). \] Putting everything together: \[ \int_0^1 2x e^x \, dx = 2e - 2(e - 1) = 2e - 2e + 2 = 2. \] Thus, \[ \int_0^1 x^2 e^x \, dx = e - 2. \] ### Final Result Putting it all together, we find: \[ \lim_{n \to \infty} \sum_{k=0}^{n} \frac{{n \choose k}}{n^k (k+3)} = e - 2. \] Hence, we have shown that \[ \lim_{n \to \infty} \sum_{k=0}^{n} \frac{{n \choose k}}{n^k (k+3)} = e - 2. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Evaluate: lim_(nrarr0) (((2n)!)/(n!n^(n)))^(1/n)

Find the sum sum_(k=0)^(10).^(20)C_k .

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Show that lim(nrarr infty) sum(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |