Home
Class 12
MATHS
Let l=int(0)^(pi//2)(cosx)/(a cos x+ b s...

Let l=`int_(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx` and `J=int_(0)^(pi//2)(sin x)/(a cosx+b sin x )dx`, where a ` gt 0 and b gt 0 ` Compute the values of l and j

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integrals \( I \) and \( J \), we start with the definitions: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{a \cos x + b \sin x} \, dx \] \[ J = \int_0^{\frac{\pi}{2}} \frac{\sin x}{a \cos x + b \sin x} \, dx \] ### Step 1: Multiply \( I \) by \( a \) and \( J \) by \( b \) and add them. We compute \( aI + bJ \): \[ aI = a \int_0^{\frac{\pi}{2}} \frac{\cos x}{a \cos x + b \sin x} \, dx = \int_0^{\frac{\pi}{2}} \frac{a \cos x}{a \cos x + b \sin x} \, dx \] \[ bJ = b \int_0^{\frac{\pi}{2}} \frac{\sin x}{a \cos x + b \sin x} \, dx = \int_0^{\frac{\pi}{2}} \frac{b \sin x}{a \cos x + b \sin x} \, dx \] Adding these two results gives: \[ aI + bJ = \int_0^{\frac{\pi}{2}} \frac{a \cos x + b \sin x}{a \cos x + b \sin x} \, dx \] ### Step 2: Simplify the integral. Since the numerator and denominator are the same, we have: \[ aI + bJ = \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] This gives us our first equation: \[ aI + bJ = \frac{\pi}{2} \quad \text{(Equation 1)} \] ### Step 3: Compute \( bI - aJ \). Now we compute \( bI - aJ \): \[ bI = b \int_0^{\frac{\pi}{2}} \frac{\cos x}{a \cos x + b \sin x} \, dx = \int_0^{\frac{\pi}{2}} \frac{b \cos x}{a \cos x + b \sin x} \, dx \] \[ -aJ = -a \int_0^{\frac{\pi}{2}} \frac{\sin x}{a \cos x + b \sin x} \, dx = -\int_0^{\frac{\pi}{2}} \frac{a \sin x}{a \cos x + b \sin x} \, dx \] Combining these gives: \[ bI - aJ = \int_0^{\frac{\pi}{2}} \frac{b \cos x - a \sin x}{a \cos x + b \sin x} \, dx \] ### Step 4: Use substitution to simplify. Let \( f(x) = a \cos x + b \sin x \). Then, the derivative \( f'(x) = -a \sin x + b \cos x \). We can rewrite the integral as: \[ bI - aJ = \int_0^{\frac{\pi}{2}} \frac{f'(x)}{f(x)} \, dx \] Using the property of logarithmic integration, we have: \[ \int \frac{f'(x)}{f(x)} \, dx = \log |f(x)| \] Thus, \[ bI - aJ = \left[ \log(a \cos x + b \sin x) \right]_0^{\frac{\pi}{2}} = \log(b) - \log(a) = \log\left(\frac{b}{a}\right) \] This gives us our second equation: \[ bI - aJ = \log\left(\frac{b}{a}\right) \quad \text{(Equation 2)} \] ### Step 5: Solve the system of equations. Now we have two equations: 1. \( aI + bJ = \frac{\pi}{2} \) 2. \( bI - aJ = \log\left(\frac{b}{a}\right) \) We can solve these equations simultaneously. Let's express \( I \) and \( J \): From Equation 1, we can express \( J \): \[ J = \frac{\frac{\pi}{2} - aI}{b} \] Substituting into Equation 2: \[ bI - a\left(\frac{\frac{\pi}{2} - aI}{b}\right) = \log\left(\frac{b}{a}\right) \] Multiplying through by \( b \): \[ b^2 I - a\left(\frac{\pi}{2} - aI\right) = b \log\left(\frac{b}{a}\right) \] Rearranging gives: \[ (b^2 + a^2)I = \frac{a\pi}{2} + b \log\left(\frac{b}{a}\right) \] Thus, \[ I = \frac{1}{a^2 + b^2} \left( a \frac{\pi}{2} + b \log\left(\frac{b}{a}\right) \right) \] Now substituting \( I \) back into Equation 1 to find \( J \): \[ J = \frac{1}{b} \left( \frac{\pi}{2} - aI \right) \] After substituting \( I \): \[ J = \frac{1}{b} \left( \frac{\pi}{2} - a \cdot \frac{1}{a^2 + b^2} \left( a \frac{\pi}{2} + b \log\left(\frac{b}{a}\right) \right) \right) \] ### Final Values After simplifying, we find: \[ I = \frac{1}{a^2 + b^2} \left( a \frac{\pi}{2} + b \log\left(\frac{b}{a}\right) \right) \] \[ J = \frac{1}{a^2 + b^2} \left( b \frac{\pi}{2} - a \log\left(\frac{b}{a}\right) \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^(pi/6) sin2x . cosx dx

int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

int_(0)^(pi//2) x sinx cos x dx=?

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let l=int(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx and J=int(0)^(pi//2)(si...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |