Home
Class 12
MATHS
Evaluate int (0)^(infty) (tan^(-1)ax-tan...

Evaluate `int _(0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx`, where a is a parameter.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\infty} \frac{\tan^{-1}(ax) - \tan^{-1}(x)}{x} \, dx, \] where \( a \) is a parameter, we will follow these steps: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\infty} \frac{\tan^{-1}(ax) - \tan^{-1}(x)}{x} \, dx. \] ### Step 2: Analyze the Case When \( a = 1 \) If \( a = 1 \), then \[ I = \int_{0}^{\infty} \frac{\tan^{-1}(x) - \tan^{-1}(x)}{x} \, dx = \int_{0}^{\infty} 0 \, dx = 0. \] Thus, we have \( I(1) = 0 \). ### Step 3: Differentiate with Respect to \( a \) Now, we differentiate \( I \) with respect to \( a \): \[ \frac{dI}{da} = \int_{0}^{\infty} \frac{\partial}{\partial a} \left( \frac{\tan^{-1}(ax) - \tan^{-1}(x)}{x} \right) \, dx. \] Using the chain rule, we find: \[ \frac{\partial}{\partial a} \tan^{-1}(ax) = \frac{x}{1 + (ax)^2}. \] Thus, \[ \frac{dI}{da} = \int_{0}^{\infty} \frac{x}{1 + (ax)^2} \cdot \frac{1}{x} \, dx = \int_{0}^{\infty} \frac{1}{1 + (ax)^2} \, dx. \] ### Step 4: Simplify the Integral Now we can simplify the integral: \[ \frac{dI}{da} = \int_{0}^{\infty} \frac{1}{1 + (ax)^2} \, dx. \] Using the substitution \( u = ax \) (thus \( du = a \, dx \) or \( dx = \frac{du}{a} \)), we have: \[ \frac{dI}{da} = \int_{0}^{\infty} \frac{1}{1 + u^2} \cdot \frac{du}{a} = \frac{1}{a} \cdot \frac{\pi}{2} = \frac{\pi}{2a}. \] ### Step 5: Integrate with Respect to \( a \) Now, we integrate \( \frac{dI}{da} \): \[ dI = \frac{\pi}{2a} \, da. \] Integrating both sides gives: \[ I = \frac{\pi}{2} \ln a + C, \] where \( C \) is a constant of integration. ### Step 6: Determine the Constant \( C \) We know that \( I(1) = 0 \): \[ 0 = \frac{\pi}{2} \ln(1) + C \implies C = 0. \] ### Final Result Thus, we have: \[ I = \frac{\pi}{2} \ln a. \] Therefore, the final answer is: \[ \int_{0}^{\infty} \frac{\tan^{-1}(ax) - \tan^{-1}(x)}{x} \, dx = \frac{\pi}{2} \ln a. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(infty) e^(-x)x^(3)dx .

Evaluate int_(0)^(int) (tan^(-1)(ax))/(xsqrt(1-x^(2)))dx , 'a' being parameter.

int (tan^(-1)x)dx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

Evaluate: int ((1)/(1+tan x))dx

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

Evaluate int_0^1(tan^(-1)x)/(1+x^2)dx

Solve: int_(-1)^(1)x tan^(-1)x dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int (0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx, where a is a pa...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |