Home
Class 12
MATHS
Evaluate int (0)^(pi//2)(dx)/(1+ cos x)...

Evaluate `int _(0)^(pi//2)(dx)/(1+ cos x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x} \] we can use a trigonometric identity to simplify the integrand. ### Step 1: Use the trigonometric identity We know that \[ \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] This implies that \[ 1 + \cos x = 1 + (2 \cos^2\left(\frac{x}{2}\right) - 1) = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sec^2\left(\frac{x}{2}\right) dx \] ### Step 2: Make a substitution Let \[ u = \frac{x}{2} \quad \Rightarrow \quad dx = 2 du \] When \( x = 0 \), \( u = 0 \) and when \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \). Thus, the integral becomes: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec^2(u) \cdot 2 du = \int_0^{\frac{\pi}{4}} \sec^2(u) du \] ### Step 3: Integrate The integral of \( \sec^2(u) \) is: \[ \int \sec^2(u) du = \tan(u) + C \] So we have: \[ I = \left[ \tan(u) \right]_0^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) \] ### Step 4: Evaluate the limits We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan(0) = 0 \] Thus: \[ I = 1 - 0 = 1 \] ### Final Answer The value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(dx)/((1+cos2x))

Evaluate int _(0)^(pi//2)cos x dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

int_(0)^( pi)(dx)/(1+cos x)

Evaluate int_(0)^(2pi) (dx)/(1+3cos^(2)x)

Evaluate int_(0)^(pi)(dx)/(1+3cos^(2)x)dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx