Home
Class 12
MATHS
Evaluate int (0)^(pi//2) sqrt(1+ cos x d...

Evaluate `int _(0)^(pi//2) sqrt(1+ cos x dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( 1 + \cos x \) can be expressed using the double angle formula: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Simplify the square root The square root can be simplified: \[ \sqrt{2 \cos^2\left(\frac{x}{2}\right)} = \sqrt{2} \cdot \cos\left(\frac{x}{2}\right) \] So the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cdot \cos\left(\frac{x}{2}\right) \, dx \] ### Step 3: Factor out the constant We can factor out \( \sqrt{2} \) from the integral: \[ \sqrt{2} \int_{0}^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) \, dx \] ### Step 4: Change of variables Let \( u = \frac{x}{2} \), then \( dx = 2 \, du \). The limits change as follows: - When \( x = 0 \), \( u = 0 \) - When \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \) Thus, we can rewrite the integral: \[ \sqrt{2} \int_{0}^{\frac{\pi}{4}} \cos(u) \cdot 2 \, du = 2\sqrt{2} \int_{0}^{\frac{\pi}{4}} \cos(u) \, du \] ### Step 5: Evaluate the integral The integral of \( \cos(u) \) is \( \sin(u) \): \[ 2\sqrt{2} \left[ \sin(u) \right]_{0}^{\frac{\pi}{4}} = 2\sqrt{2} \left( \sin\left(\frac{\pi}{4}\right) - \sin(0) \right) \] Since \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) and \( \sin(0) = 0 \): \[ 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate int _(0)^(pi//2)(dx)/(1+ cos x)

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate : int_(0)^( pi//2) (sqrt( sec x) )/( sqrt(sec x ) + sqrt( cosec x) ) dx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate int _(0)^(pi//2)cos x dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate: int_0^(pi//2)sqrt(1-cos2x)dxdot

Evaluate: int_0^(pi//2)sqrt(1-cos2x)dxdot