Home
Class 12
MATHS
int(0)^(pi/6) sin2x . cosx dx...

`int_(0)^(pi/6) sin2x . cosx dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{6}} \sin(2x) \cos(x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Using the double angle identity for sine, we can express \( \sin(2x) \) as \( 2 \sin(x) \cos(x) \). Thus, we rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{6}} \sin(2x) \cos(x) \, dx = \int_{0}^{\frac{\pi}{6}} 2 \sin(x) \cos(x) \cos(x) \, dx = 2 \int_{0}^{\frac{\pi}{6}} \sin(x) \cos^2(x) \, dx \] ### Step 2: Substitution Let \( t = \cos(x) \). Then, the derivative \( dt = -\sin(x) \, dx \), which implies \( \sin(x) \, dx = -dt \). We also need to change the limits of integration: - When \( x = 0 \), \( t = \cos(0) = 1 \) - When \( x = \frac{\pi}{6} \), \( t = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \) Now, substituting these into the integral gives: \[ I = 2 \int_{1}^{\frac{\sqrt{3}}{2}} \sin(x) \cos^2(x) \, dx = 2 \int_{1}^{\frac{\sqrt{3}}{2}} \cos^2(x) (-dt) \] Reversing the limits of integration introduces a negative sign: \[ I = 2 \int_{\frac{\sqrt{3}}{2}}^{1} t^2 (-dt) = 2 \int_{\frac{\sqrt{3}}{2}}^{1} t^2 \, dt \] ### Step 3: Evaluate the Integral Now we can compute the integral: \[ I = 2 \int_{\frac{\sqrt{3}}{2}}^{1} t^2 \, dt = 2 \left[ \frac{t^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1} \] Calculating this gives: \[ = 2 \left( \frac{1^3}{3} - \frac{\left(\frac{\sqrt{3}}{2}\right)^3}{3} \right) = 2 \left( \frac{1}{3} - \frac{3\sqrt{3}}{24} \right) = 2 \left( \frac{1}{3} - \frac{\sqrt{3}}{8} \right) \] ### Step 4: Simplify the Expression To simplify: \[ = 2 \left( \frac{8}{24} - \frac{3\sqrt{3}}{24} \right) = 2 \cdot \frac{8 - 3\sqrt{3}}{24} = \frac{16 - 6\sqrt{3}}{24} = \frac{8 - 3\sqrt{3}}{12} \] Thus, the final answer is: \[ I = \frac{8 - 3\sqrt{3}}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi) sin 3x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi) x sin x cos^(2)x\ dx

Show that (i) int_(0)^(pi//2)f(sinx) d x=int_(0)^(pi//2)f(cos x) d x (ii) int_(0)^(pi//2)f(tan x) d x=int_(0)^(pi//2)f(cot x) d x (iii) int_(0)^(pi//2)f(sin 2 x) sin xd x = int_(o)^(pi//2)f(sin 2x).cosx d x

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes