Home
Class 12
MATHS
int(1)^(2)(dx)/(sqrtx-sqrt(x-1))...

`int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{2} \frac{dx}{\sqrt{x} - \sqrt{x-1}}, \] we will follow these steps: ### Step 1: Rationalize the Denominator To simplify the integral, we can rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{x} + \sqrt{x-1}\): \[ I = \int_{1}^{2} \frac{\sqrt{x} + \sqrt{x-1}}{(\sqrt{x} - \sqrt{x-1})(\sqrt{x} + \sqrt{x-1})} \, dx. \] ### Step 2: Simplify the Denominator The denominator can be simplified using the difference of squares: \[ (\sqrt{x})^2 - (\sqrt{x-1})^2 = x - (x-1) = 1. \] Thus, the integral simplifies to: \[ I = \int_{1}^{2} (\sqrt{x} + \sqrt{x-1}) \, dx. \] ### Step 3: Split the Integral Now we can split the integral into two separate integrals: \[ I = \int_{1}^{2} \sqrt{x} \, dx + \int_{1}^{2} \sqrt{x-1} \, dx. \] ### Step 4: Evaluate Each Integral 1. **First Integral:** \[ \int \sqrt{x} \, dx = \frac{2}{3} x^{3/2}. \] Evaluating from 1 to 2: \[ \left[ \frac{2}{3} x^{3/2} \right]_{1}^{2} = \frac{2}{3} (2^{3/2}) - \frac{2}{3} (1^{3/2}) = \frac{2}{3} (2\sqrt{2}) - \frac{2}{3} (1) = \frac{4\sqrt{2}}{3} - \frac{2}{3} = \frac{4\sqrt{2} - 2}{3}. \] 2. **Second Integral:** Let \(u = x - 1\), then \(du = dx\) and when \(x = 1\), \(u = 0\) and when \(x = 2\), \(u = 1\): \[ \int_{0}^{1} \sqrt{u} \, du = \frac{2}{3} u^{3/2} \bigg|_{0}^{1} = \frac{2}{3} (1) - 0 = \frac{2}{3}. \] ### Step 5: Combine the Results Now we combine both integrals: \[ I = \left( \frac{4\sqrt{2} - 2}{3} \right) + \frac{2}{3} = \frac{4\sqrt{2} - 2 + 2}{3} = \frac{4\sqrt{2}}{3}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{4\sqrt{2}}{3}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If I=int_(1)^(2)(dx)/(sqrt(x)-sqrt(x-1)) , then value of (9)/(32)(l)^(2) , is _________.

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

int (1/sqrtx-sqrtx)dx

int(1-x^(2))sqrt(x)dx

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

Evaluate : int(1)/(sqrtx+sqrt(x-1))dx .