Home
Class 12
MATHS
int(0)^(pi//4)(sin x + cos x)/(9+16 sin ...

`int_(0)^(pi//4)(sin x + cos x)/(9+16 sin 2 x )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx \] we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral in a more manageable form. We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can express the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16(2 \sin x \cos x)} \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 32 \sin x \cos x} \, dx \] ### Step 2: Factor out constants Next, we can factor out a constant from the denominator: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{16 \left( \frac{9}{16} + 2 \sin x \cos x \right)} \, dx = \frac{1}{16} \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{\frac{9}{16} + 2 \sin x \cos x} \, dx \] ### Step 3: Use a trigonometric identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite \( 2 \sin x \cos x \) as \( \sin 2x \): \[ I = \frac{1}{16} \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{\frac{9}{16} + \sin 2x} \, dx \] ### Step 4: Substitute \( t = \sin x - \cos x \) Let \( t = \sin x - \cos x \). Then, we have: \[ dt = (\cos x + \sin x) \, dx \] ### Step 5: Change the limits of integration When \( x = 0 \), \( t = \sin(0) - \cos(0) = -1 \). When \( x = \frac{\pi}{4} \), \( t = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = 0 \). ### Step 6: Rewrite the integral in terms of \( t \) Now we can rewrite the integral in terms of \( t \): \[ I = \frac{1}{16} \int_{-1}^{0} \frac{dt}{\frac{9}{16} + \sin 2x} \] ### Step 7: Solve the integral Using the formula for the integral of the form \( \int \frac{1}{a^2 - x^2} \, dx \): \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C \] Here, \( a = \frac{5}{4} \), we compute: \[ I = \frac{1}{16} \cdot \frac{1}{2 \cdot \frac{5}{4}} \left[ \ln \left| \frac{\frac{5}{4} + t}{\frac{5}{4} - t} \right| \right]_{-1}^{0} \] ### Step 8: Evaluate the limits Calculate the value of the integral at the limits: \[ I = \frac{1}{40} \left( \ln \left| \frac{\frac{5}{4} + 0}{\frac{5}{4} - 0} \right| - \ln \left| \frac{\frac{5}{4} - (-1)}{\frac{5}{4} + 1} \right| \right) \] ### Step 9: Simplify the expression This simplifies to: \[ I = \frac{1}{40} \left( 0 - \ln \left| \frac{\frac{9}{4}}{\frac{9}{4}} \right| \right) \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{20} \ln 3 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

Evaluate : int_(0)^(pi/4) (sinx+ cos x)/( 16 + 9sin2x)

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

int_(0)^(pi//2) x sin x cos x dx

Evaluate the definite integrals int_0^(pi/4)(sinx+cosx)/(9+16sin2x)dx

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is