Home
Class 12
MATHS
int(0)^(pi) cos 2x . Log (sinx) dx...

`int_(0)^(pi) cos 2x . Log (sinx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \cos(2x) \log(\sin x) \, dx \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify \( u \) and \( dv \)**: We will let: \[ u = \log(\sin x) \quad \text{and} \quad dv = \cos(2x) \, dx \] 2. **Differentiate \( u \) and integrate \( dv \)**: Now we find \( du \) and \( v \): \[ du = \frac{1}{\sin x} \cos x \, dx = \cot x \, dx \] \[ v = \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] 3. **Apply the integration by parts formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting \( u \), \( v \), \( du \), and \( dv \) into the formula gives: \[ I = \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \sin(2x) \cot x \, dx \] 4. **Evaluate the boundary term**: Evaluating the boundary term: \[ \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} \] At \( x = 0 \) and \( x = \pi \), \( \sin(2x) = 0 \), thus: \[ \left[ \log(\sin x) \cdot \frac{1}{2} \sin(2x) \right]_{0}^{\pi} = 0 \] 5. **Simplify the integral**: Now we need to simplify the integral: \[ I = 0 - \frac{1}{2} \int_{0}^{\pi} \sin(2x) \cot x \, dx \] We can express \( \sin(2x) \) as \( 2 \sin x \cos x \): \[ I = -\frac{1}{2} \int_{0}^{\pi} 2 \sin x \cos x \cot x \, dx = -\int_{0}^{\pi} \cos x \, dx \] 6. **Evaluate the remaining integral**: \[ \int_{0}^{\pi} \cos x \, dx = [\sin x]_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 \] Therefore: \[ I = -0 = 0 \] 7. **Final Result**: The final result of the integral is: \[ I = -\frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi) x log sinx dx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

int_(0)^(pi//2) sin 2x log cot x dx is equal to

int_(0)^(pi) x log sinx\ dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx