Home
Class 12
MATHS
The value of int(0)^(2)[x+[x+[x]]] dx (...

The value of ` int_(0)^(2)[x+[x+[x]]] dx` (where, [.] denotes the greatest integer function )is equal to

A

2

B

3

C

`-3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} [x + [x + [x]]] \, dx \), where \([.]\) denotes the greatest integer function, we can break down the problem step by step. ### Step 1: Understand the Greatest Integer Function The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). We will analyze the function \( [x + [x + [x]]] \) over the interval \([0, 2]\). ### Step 2: Determine the intervals We will consider the intervals where the function \([x]\) changes: - For \(0 \leq x < 1\), \([x] = 0\) - For \(1 \leq x < 2\), \([x] = 1\) ### Step 3: Evaluate the function in the intervals 1. **For \(0 \leq x < 1\)**: - \([x] = 0\) - \([x + [x]] = [x + 0] = [x] = 0\) - \([x + [x + [x]]] = [x + 0] = [x] = 0\) - Therefore, \( [x + [x + [x]]] = 0 \). 2. **For \(1 \leq x < 2\)**: - \([x] = 1\) - \([x + [x]] = [x + 1] = [x] + 1 = 1 + 1 = 2\) - \([x + [x + [x]]] = [x + 2] = [x] + 2 = 1 + 2 = 3\) - Therefore, \( [x + [x + [x]]] = 3 \). ### Step 4: Set up the integral Now we can set up the integral based on the intervals: \[ \int_{0}^{2} [x + [x + [x]]] \, dx = \int_{0}^{1} 0 \, dx + \int_{1}^{2} 3 \, dx \] ### Step 5: Calculate the integrals 1. **First integral**: \[ \int_{0}^{1} 0 \, dx = 0 \] 2. **Second integral**: \[ \int_{1}^{2} 3 \, dx = 3 \cdot (2 - 1) = 3 \] ### Step 6: Combine the results Adding the results from both integrals: \[ \int_{0}^{2} [x + [x + [x]]] \, dx = 0 + 3 = 3 \] ### Final Answer Thus, the value of the integral is \( \boxed{3} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |