Home
Class 12
MATHS
The value of int0^([x]) 2^x/(2^([x])) dx...

The value of `int_0^([x]) 2^x/(2^([x])) dx` is equal to (where, [.] denotes the greatest integer function)

A

`([x])/(log2)`

B

`([x])/(2 log2)`

C

`([x])/(4 log 2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{[x]} \frac{2^x}{2^{[x]}} \, dx \), where \([x]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Rewrite the Integral The integral can be rewritten as: \[ \int_0^{[x]} \frac{2^x}{2^{[x]}} \, dx = \int_0^{[x]} 2^{x - [x]} \, dx \] Here, \(x - [x]\) represents the fractional part of \(x\), denoted as \(\{x\}\). ### Step 2: Identify the Limits of Integration Let \(n = [x]\). The integral now becomes: \[ \int_0^{n} 2^{x - n} \, dx \] This is valid since \([x] = n\) is an integer. ### Step 3: Simplify the Integral The expression \(2^{x - n}\) can be rewritten as: \[ 2^{x - n} = \frac{2^x}{2^n} \] Thus, the integral simplifies to: \[ \int_0^{n} 2^{x - n} \, dx = \frac{1}{2^n} \int_0^{n} 2^x \, dx \] ### Step 4: Compute the Integral Now we need to compute the integral \( \int_0^{n} 2^x \, dx \): \[ \int 2^x \, dx = \frac{2^x}{\ln 2} + C \] Evaluating from 0 to \(n\): \[ \int_0^{n} 2^x \, dx = \left[ \frac{2^x}{\ln 2} \right]_0^{n} = \frac{2^n}{\ln 2} - \frac{2^0}{\ln 2} = \frac{2^n - 1}{\ln 2} \] ### Step 5: Substitute Back into the Integral Substituting this result back into our integral gives: \[ \int_0^{n} 2^{x - n} \, dx = \frac{1}{2^n} \cdot \frac{2^n - 1}{\ln 2} = \frac{2^n - 1}{2^n \ln 2} \] ### Step 6: Final Result Thus, the value of the integral \( \int_0^{[x]} \frac{2^x}{2^{[x]}} \, dx \) is: \[ \frac{2^n - 1}{2^n \ln 2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |