Home
Class 12
MATHS
The value of int(0)^(4) {x} dx (where , ...

The value of `int_(0)^(4) {x} dx` (where , {.} denotes fractional part of x) is equal to

A

`(4)/(3)`

B

`(5)/(3)`

C

`(7)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} \{x\} \, dx \), where \( \{x\} \) denotes the fractional part of \( x \), we can use the property that the fractional part can be expressed as: \[ \{x\} = x - \lfloor x \rfloor \] Thus, we can rewrite the integral as: \[ \int_{0}^{4} \{x\} \, dx = \int_{0}^{4} (x - \lfloor x \rfloor) \, dx \] Next, we will split the integral into intervals where \( \lfloor x \rfloor \) is constant. The function \( \lfloor x \rfloor \) changes at integer values, so we will break the integral into the following intervals: \( [0, 1) \), \( [1, 2) \), \( [2, 3) \), and \( [3, 4) \). ### Step 1: Evaluate the integral from \( 0 \) to \( 1 \) In the interval \( [0, 1) \): - \( \lfloor x \rfloor = 0 \) - Thus, \( \{x\} = x - 0 = x \) So, we have: \[ \int_{0}^{1} \{x\} \, dx = \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Step 2: Evaluate the integral from \( 1 \) to \( 2 \) In the interval \( [1, 2) \): - \( \lfloor x \rfloor = 1 \) - Thus, \( \{x\} = x - 1 \) So, we have: \[ \int_{1}^{2} \{x\} \, dx = \int_{1}^{2} (x - 1) \, dx = \int_{1}^{2} x \, dx - \int_{1}^{2} 1 \, dx \] Calculating each part: \[ \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] \[ \int_{1}^{2} 1 \, dx = [x]_{1}^{2} = 2 - 1 = 1 \] Thus, \[ \int_{1}^{2} \{x\} \, dx = \frac{3}{2} - 1 = \frac{1}{2} \] ### Step 3: Evaluate the integral from \( 2 \) to \( 3 \) In the interval \( [2, 3) \): - \( \lfloor x \rfloor = 2 \) - Thus, \( \{x\} = x - 2 \) So, we have: \[ \int_{2}^{3} \{x\} \, dx = \int_{2}^{3} (x - 2) \, dx = \int_{2}^{3} x \, dx - \int_{2}^{3} 2 \, dx \] Calculating each part: \[ \int_{2}^{3} x \, dx = \left[ \frac{x^2}{2} \right]_{2}^{3} = \frac{3^2}{2} - \frac{2^2}{2} = \frac{9}{2} - \frac{4}{2} = \frac{5}{2} \] \[ \int_{2}^{3} 2 \, dx = [2x]_{2}^{3} = 2(3) - 2(2) = 6 - 4 = 2 \] Thus, \[ \int_{2}^{3} \{x\} \, dx = \frac{5}{2} - 2 = \frac{1}{2} \] ### Step 4: Evaluate the integral from \( 3 \) to \( 4 \) In the interval \( [3, 4) \): - \( \lfloor x \rfloor = 3 \) - Thus, \( \{x\} = x - 3 \) So, we have: \[ \int_{3}^{4} \{x\} \, dx = \int_{3}^{4} (x - 3) \, dx = \int_{3}^{4} x \, dx - \int_{3}^{4} 3 \, dx \] Calculating each part: \[ \int_{3}^{4} x \, dx = \left[ \frac{x^2}{2} \right]_{3}^{4} = \frac{4^2}{2} - \frac{3^2}{2} = \frac{16}{2} - \frac{9}{2} = \frac{7}{2} \] \[ \int_{3}^{4} 3 \, dx = [3x]_{3}^{4} = 3(4) - 3(3) = 12 - 9 = 3 \] Thus, \[ \int_{3}^{4} \{x\} \, dx = \frac{7}{2} - 3 = \frac{1}{2} \] ### Step 5: Combine all parts Now, we can combine all the parts: \[ \int_{0}^{4} \{x\} \, dx = \int_{0}^{1} \{x\} \, dx + \int_{1}^{2} \{x\} \, dx + \int_{2}^{3} \{x\} \, dx + \int_{3}^{4} \{x\} \, dx \] \[ = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \] Thus, the value of the integral \( \int_{0}^{4} \{x\} \, dx \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

The value of int({[x]})dx where {.} and [.] denotes the fractional part of x and greatest integer function equals

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |