Home
Class 12
MATHS
The value of int(1)^(4){x}^([x]) dx (whe...

The value of `int_(1)^(4){x}^([x]) dx` (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

A

(a)`(11)/(12)`

B

(b)`(13)/(12)`

C

(c)`(70)/(12)`

D

(d)`(19)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{4} x^{[x]} \, dx \), where \([x]\) is the greatest integer function and \(\{x\}\) is the fractional part of \(x\), we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify the intervals The greatest integer function \([x]\) changes at integer values. Therefore, we can break the integral from 1 to 4 into three segments: - From 1 to 2: Here, \([x] = 1\) - From 2 to 3: Here, \([x] = 2\) - From 3 to 4: Here, \([x] = 3\) Thus, we can write: \[ \int_{1}^{4} x^{[x]} \, dx = \int_{1}^{2} x^{1} \, dx + \int_{2}^{3} x^{2} \, dx + \int_{3}^{4} x^{3} \, dx \] ### Step 2: Solve each integral 1. **Integral from 1 to 2:** \[ \int_{1}^{2} x^{1} \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] 2. **Integral from 2 to 3:** \[ \int_{2}^{3} x^{2} \, dx = \left[ \frac{x^3}{3} \right]_{2}^{3} = \frac{3^3}{3} - \frac{2^3}{3} = \frac{27}{3} - \frac{8}{3} = \frac{19}{3} \] 3. **Integral from 3 to 4:** \[ \int_{3}^{4} x^{3} \, dx = \left[ \frac{x^4}{4} \right]_{3}^{4} = \frac{4^4}{4} - \frac{3^4}{4} = \frac{256}{4} - \frac{81}{4} = \frac{175}{4} \] ### Step 3: Combine the results Now, we combine the results of the three integrals: \[ \int_{1}^{4} x^{[x]} \, dx = \frac{3}{2} + \frac{19}{3} + \frac{175}{4} \] ### Step 4: Find a common denominator The least common multiple of the denominators \(2, 3, 4\) is \(12\). We convert each fraction: - \(\frac{3}{2} = \frac{18}{12}\) - \(\frac{19}{3} = \frac{76}{12}\) - \(\frac{175}{4} = \frac{525}{12}\) ### Step 5: Add the fractions Now we can add: \[ \int_{1}^{4} x^{[x]} \, dx = \frac{18}{12} + \frac{76}{12} + \frac{525}{12} = \frac{619}{12} \] ### Final Answer Thus, the value of the integral is: \[ \int_{1}^{4} x^{[x]} \, dx = \frac{619}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of x satisfying int_(0)^(2[x+14]){(x)/(2)} dx=int_(0)^({x})[x+14] dx is equal to (where, [.] and {.} denotes the greates integer and fractional part of x)

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |