Home
Class 12
MATHS
The value of int(0)^(x)[t+1]^(3) dt (wh...

The value of ` int_(0)^(x)[t+1]^(3) dt` (where, [.] denotes the greatest integer function of x) is qeual to

A

`(([x]([x]+1))/(2))^(2)+([x]+1)^(3){x}`

B

`(([x]([x]+1))/(2))^(3)+([x]+1)^(3){x}`

C

`(([x]([x]+1))/(2))^(3)+([x]+1)^(2){x}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{x} (t + 1)^3 \, dt \), where \( [x] \) denotes the greatest integer function of \( x \), we will break down the solution step by step. ### Step 1: Expand the integrand First, we need to expand the integrand \( (t + 1)^3 \): \[ (t + 1)^3 = t^3 + 3t^2 + 3t + 1 \] ### Step 2: Set up the integral Now, we can set up the integral: \[ \int_{0}^{x} (t + 1)^3 \, dt = \int_{0}^{x} (t^3 + 3t^2 + 3t + 1) \, dt \] ### Step 3: Integrate term by term Next, we will integrate each term separately: \[ \int_{0}^{x} t^3 \, dt = \left[ \frac{t^4}{4} \right]_{0}^{x} = \frac{x^4}{4} \] \[ \int_{0}^{x} 3t^2 \, dt = 3 \left[ \frac{t^3}{3} \right]_{0}^{x} = x^3 \] \[ \int_{0}^{x} 3t \, dt = 3 \left[ \frac{t^2}{2} \right]_{0}^{x} = \frac{3x^2}{2} \] \[ \int_{0}^{x} 1 \, dt = [t]_{0}^{x} = x \] ### Step 4: Combine the results Now, we combine all the results from the integrations: \[ \int_{0}^{x} (t + 1)^3 \, dt = \frac{x^4}{4} + x^3 + \frac{3x^2}{2} + x \] ### Step 5: Simplify the expression To simplify, we can express everything in terms of a common denominator: \[ = \frac{x^4}{4} + \frac{4x^3}{4} + \frac{6x^2}{4} + \frac{4x}{4} \] \[ = \frac{x^4 + 4x^3 + 6x^2 + 4x}{4} \] ### Step 6: Factor the polynomial We can factor the polynomial in the numerator: \[ x^4 + 4x^3 + 6x^2 + 4x = x(x^3 + 4x^2 + 6x + 4) \] ### Step 7: Final expression Thus, the final expression for the integral is: \[ \int_{0}^{x} (t + 1)^3 \, dt = \frac{x(x^3 + 4x^2 + 6x + 4)}{4} \] ### Step 8: Consider the greatest integer function Since the problem states that we need to evaluate this for \( [x] \), we will substitute \( [x] \) into our expression: \[ \int_{0}^{[x]} (t + 1)^3 \, dt = \frac{[x]([x]^3 + 4[x]^2 + 6[x] + 4)}{4} \] ### Conclusion The value of the integral \( \int_{0}^{[x]} (t + 1)^3 \, dt \) is: \[ \frac{[x]([x]^3 + 4[x]^2 + 6[x] + 4)}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |