Home
Class 12
MATHS
The value of int(0)^(10pi)[tan^(-1)x]dx ...

The value of `int_(0)^(10pi)[tan^(-1)x]dx` (where, [.] denotes the greatest integer functionof x) is equal to

A

`tan 1`

B

`10 pi`

C

`10 pi -tan 1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{10\pi} \lfloor \tan^{-1} x \rfloor \, dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the function \( \tan^{-1} x \) The function \( \tan^{-1} x \) (or arctan) is a continuous function that approaches \( \frac{\pi}{2} \) as \( x \) approaches infinity. We need to determine the values of \( \tan^{-1} x \) at specific points to understand how it behaves over the interval \( [0, 10\pi] \). ### Step 2: Calculate \( \tan^{-1} x \) at key points - At \( x = 0 \): \[ \tan^{-1}(0) = 0 \] - At \( x = 1 \): \[ \tan^{-1}(1) = \frac{\pi}{4} \approx 0.785 \] - At \( x = 10 \): \[ \tan^{-1}(10) \approx 1.5608 \] - As \( x \) approaches infinity: \[ \tan^{-1}(x) \to \frac{\pi}{2} \approx 1.5708 \] ### Step 3: Determine the intervals for \( \lfloor \tan^{-1} x \rfloor \) From the calculations: - For \( 0 \leq x < 1 \), \( \tan^{-1} x \) is in the interval \( [0, \frac{\pi}{4}) \) so \( \lfloor \tan^{-1} x \rfloor = 0 \). - For \( 1 \leq x < 10 \), \( \tan^{-1} x \) is in the interval \( [\frac{\pi}{4}, \tan^{-1}(10)) \) so \( \lfloor \tan^{-1} x \rfloor = 1 \). - For \( x \geq 10 \), \( \tan^{-1} x \) approaches \( \frac{\pi}{2} \) but stays less than \( 2 \), so \( \lfloor \tan^{-1} x \rfloor = 1 \) until \( x = 10\pi \). ### Step 4: Set up the integral We can split the integral into two parts based on the intervals identified: \[ \int_{0}^{10\pi} \lfloor \tan^{-1} x \rfloor \, dx = \int_{0}^{1} 0 \, dx + \int_{1}^{10\pi} 1 \, dx \] ### Step 5: Evaluate the integrals - The first integral: \[ \int_{0}^{1} 0 \, dx = 0 \] - The second integral: \[ \int_{1}^{10\pi} 1 \, dx = [x]_{1}^{10\pi} = 10\pi - 1 \] ### Step 6: Combine the results Thus, the value of the original integral is: \[ \int_{0}^{10\pi} \lfloor \tan^{-1} x \rfloor \, dx = 0 + (10\pi - 1) = 10\pi - 1 \] ### Final Answer The value of \( \int_{0}^{10\pi} \lfloor \tan^{-1} x \rfloor \, dx \) is \( 10\pi - 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |