Home
Class 12
MATHS
If f(x)=min{|x-1|,|x|,|x+1|, then the va...

If `f(x)=min{|x-1|,|x|,|x+1|,` then the value of `int_-1^1 f(x)dx` is equal to

A

1

B

`(1)/(2)`

C

`(1)/(4)`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the integral of the function \( f(x) = \min\{|x-1|, |x|, |x+1|\} \) over the interval \([-1, 1]\). ### Step 1: Analyze the function \( f(x) \) The function \( f(x) \) is defined as the minimum of three absolute value functions. We will analyze each component: 1. \( |x-1| \) 2. \( |x| \) 3. \( |x+1| \) ### Step 2: Determine the critical points The critical points occur where the expressions inside the absolute values equal zero: - \( |x-1| = 0 \) at \( x = 1 \) - \( |x| = 0 \) at \( x = 0 \) - \( |x+1| = 0 \) at \( x = -1 \) ### Step 3: Evaluate \( f(x) \) in different intervals We will evaluate \( f(x) \) in the intervals defined by the critical points: 1. **For \( x \in [-1, -0.5] \)**: - \( |x-1| = 1-x \) - \( |x| = -x \) - \( |x+1| = x+1 \) - Thus, \( f(x) = \min\{1-x, -x, x+1\} = x+1 \) (since \( x+1 \) is the smallest value in this interval). 2. **For \( x \in [-0.5, 0] \)**: - \( |x-1| = 1-x \) - \( |x| = -x \) - \( |x+1| = x+1 \) - Thus, \( f(x) = \min\{1-x, -x, x+1\} = -x \). 3. **For \( x \in [0, 0.5] \)**: - \( |x-1| = 1-x \) - \( |x| = x \) - \( |x+1| = x+1 \) - Thus, \( f(x) = \min\{1-x, x, x+1\} = x \). 4. **For \( x \in [0.5, 1] \)**: - \( |x-1| = 1-x \) - \( |x| = x \) - \( |x+1| = x+1 \) - Thus, \( f(x) = \min\{1-x, x, x+1\} = 1-x \). ### Step 4: Set up the integral Now we can set up the integral as follows: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{-0.5} (x + 1) \, dx + \int_{-0.5}^{0} (-x) \, dx + \int_{0}^{0.5} x \, dx + \int_{0.5}^{1} (1 - x) \, dx \] ### Step 5: Calculate each integral 1. **Calculate \( \int_{-1}^{-0.5} (x + 1) \, dx \)**: \[ = \left[ \frac{x^2}{2} + x \right]_{-1}^{-0.5} = \left( \frac{(-0.5)^2}{2} - 0.5 \right) - \left( \frac{(-1)^2}{2} - 1 \right) \] \[ = \left( \frac{0.25}{2} - 0.5 \right) - \left( \frac{1}{2} - 1 \right) = \left( 0.125 - 0.5 \right) - \left( 0.5 - 1 \right) = -0.375 + 0.5 = 0.125 \] 2. **Calculate \( \int_{-0.5}^{0} (-x) \, dx \)**: \[ = \left[ -\frac{x^2}{2} \right]_{-0.5}^{0} = 0 - \left( -\frac{(-0.5)^2}{2} \right) = 0.125 \] 3. **Calculate \( \int_{0}^{0.5} x \, dx \)**: \[ = \left[ \frac{x^2}{2} \right]_{0}^{0.5} = \frac{(0.5)^2}{2} - 0 = \frac{0.25}{2} = 0.125 \] 4. **Calculate \( \int_{0.5}^{1} (1 - x) \, dx \)**: \[ = \left[ x - \frac{x^2}{2} \right]_{0.5}^{1} = \left( 1 - \frac{1}{2} \right) - \left( 0.5 - \frac{(0.5)^2}{2} \right) \] \[ = \left( 0.5 \right) - \left( 0.5 - 0.125 \right) = 0.5 - 0.375 = 0.125 \] ### Step 6: Sum the integrals Now we sum all the calculated integrals: \[ \int_{-1}^{1} f(x) \, dx = 0.125 + 0.125 + 0.125 + 0.125 = 0.5 \] ### Final Answer Thus, the value of \( \int_{-1}^{1} f(x) \, dx \) is \( \frac{1}{4} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1)(x|x|)dx is equal to

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int_(-1)^1f(x)dxdot

If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int_(-1)^1f(x)dxdot

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) = f(1) = 1 and int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2) , then the value of int_(1)^(e ) f''(x)ln xdx equals :

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |