Home
Class 12
MATHS
The value of int(0)^(infty)[2e^(-x)] dx ...

The value of `int_(0)^(infty)[2e^(-x)] dx` (where ,[.] denotes the greatest integer function of x) is equal to

A

1

B

`log_(e)2`

C

0

D

`(1)/(e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\infty} [2e^{-x}] \, dx \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the function \( f(x) = 2e^{-x} \) The function \( f(x) = 2e^{-x} \) is a monotonically decreasing function. As \( x \) increases, \( e^{-x} \) decreases, thus \( f(x) \) will also decrease. ### Step 2: Determine the intervals for the greatest integer function To find the intervals where \( [2e^{-x}] \) takes constant integer values, we need to find where \( 2e^{-x} \) crosses integer values. 1. When \( x = 0 \): \[ f(0) = 2e^{0} = 2 \] So, \( [2e^{-0}] = 2 \). 2. When \( x \) approaches \( \log(2) \): \[ f(\log(2)) = 2e^{-\log(2)} = 2 \cdot \frac{1}{2} = 1 \] So, \( [2e^{-\log(2)}] = 1 \). 3. When \( x \) approaches \( \infty \): \[ f(x) \to 0 \quad \text{as } x \to \infty \] So, \( [2e^{-x}] = 0 \) for \( x > \log(2) \). ### Step 3: Set up the integral based on intervals We can now split the integral into three parts based on the intervals: 1. From \( 0 \) to \( \log(2) \), \( [2e^{-x}] = 2 \). 2. From \( \log(2) \) to \( \infty \), \( [2e^{-x}] = 1 \) until \( x \) reaches \( \infty \), where it becomes \( 0 \). Thus, we can write: \[ \int_{0}^{\infty} [2e^{-x}] \, dx = \int_{0}^{\log(2)} 2 \, dx + \int_{\log(2)}^{\infty} 1 \, dx \] ### Step 4: Calculate the integrals 1. For the first integral: \[ \int_{0}^{\log(2)} 2 \, dx = 2 \cdot x \Big|_{0}^{\log(2)} = 2 \cdot \log(2) - 2 \cdot 0 = 2 \log(2) \] 2. For the second integral: \[ \int_{\log(2)}^{\infty} 1 \, dx = \left[ x \right]_{\log(2)}^{\infty} = \infty - \log(2) = \infty \] ### Step 5: Combine the results Since the second integral diverges, we conclude: \[ \int_{0}^{\infty} [2e^{-x}] \, dx = \infty \] ### Final Answer The value of \( \int_{0}^{\infty} [2e^{-x}] \, dx \) is \( \infty \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |