Home
Class 12
MATHS
The value of int(1)^(10pi)([sec^(-1)x]) ...

The value of `int_(1)^(10pi)([sec^(-1)x]) dx` (where ,[.] denotes the greatest integer function ) is equal to

A

(a)`(sec1)-10pi`

B

(b)`10pi-sec1`

C

(c)`pi-sec 1`

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{10\pi} [\sec^{-1} x] \, dx \) where \( [.] \) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the function \( \sec^{-1} x \) The function \( \sec^{-1} x \) is defined for \( x \geq 1 \) and \( x \leq -1 \). The range of \( \sec^{-1} x \) is \( [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \). ### Step 2: Identify the intervals for integration Since we are integrating from \( 1 \) to \( 10\pi \), we need to determine the values of \( \sec^{-1} x \) within this interval. - For \( x = 1 \), \( \sec^{-1}(1) = 0 \). - For \( x = 2 \), \( \sec^{-1}(2) = \frac{\pi}{3} \). - For \( x = 3 \), \( \sec^{-1}(3) \) is approximately \( 1.249 \) radians. - Continuing this way, we find that \( \sec^{-1}(x) \) will keep increasing as \( x \) increases. ### Step 3: Determine the greatest integer function values We need to find the greatest integer values of \( \sec^{-1} x \) for \( x \) in the interval \( [1, 10\pi] \). - For \( 1 \leq x < 2 \): \( [\sec^{-1} x] = 0 \) - For \( 2 \leq x < 3 \): \( [\sec^{-1} x] = 1 \) - For \( 3 \leq x < 4 \): \( [\sec^{-1} x] = 1 \) - For \( 4 \leq x < 5 \): \( [\sec^{-1} x] = 1 \) - For \( 5 \leq x < 6 \): \( [\sec^{-1} x] = 1 \) - For \( 6 \leq x < 7 \): \( [\sec^{-1} x] = 1 \) - For \( 7 \leq x < 8 \): \( [\sec^{-1} x] = 1 \) - For \( 8 \leq x < 9 \): \( [\sec^{-1} x] = 1 \) - For \( 9 \leq x < 10 \): \( [\sec^{-1} x] = 1 \) - For \( 10 \leq x < 10\pi \): \( [\sec^{-1} x] = 2 \) (since \( \sec^{-1}(10) \) is greater than \( 2 \) but less than \( \frac{3\pi}{2} \)) ### Step 4: Set up the integral based on intervals Now we can break the integral into parts based on the intervals we identified: \[ \int_{1}^{10\pi} [\sec^{-1} x] \, dx = \int_{1}^{2} 0 \, dx + \int_{2}^{10} 1 \, dx + \int_{10}^{10\pi} 2 \, dx \] ### Step 5: Calculate each integral 1. \( \int_{1}^{2} 0 \, dx = 0 \) 2. \( \int_{2}^{10} 1 \, dx = [x]_{2}^{10} = 10 - 2 = 8 \) 3. \( \int_{10}^{10\pi} 2 \, dx = 2[x]_{10}^{10\pi} = 2(10\pi - 10) = 20\pi - 20 \) ### Step 6: Combine the results Now we sum the results of the integrals: \[ \int_{1}^{10\pi} [\sec^{-1} x] \, dx = 0 + 8 + (20\pi - 20) = 20\pi - 12 \] ### Final Answer Thus, the value of the integral \( \int_{1}^{10\pi} [\sec^{-1} x] \, dx \) is \( 20\pi - 12 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to:

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |