Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)[ cot^(-...

The value of `int_(-pi//2)^(pi//2)[ cot^(-1)x] dx` (where ,[.] denotes greatest integer function) is equal to

A

(a)`pi+ cot 1`

B

(b)`pi+ cot 2`

C

(c)`pi+ cot1 + cot2`

D

(d)`cot 1+cot 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot^{-1}(x) \, dx \), we can use the properties of the cotangent inverse function and symmetry. ### Step 1: Define the Integral Let \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot^{-1}(x) \, dx \). ### Step 2: Use the Property of Cotangent Inverse We know that: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \quad \text{for } x \in \mathbb{R} \] Thus, we can express the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot^{-1}(-x) \, dx \] Substituting the property we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \pi - \cot^{-1}(x) \right) \, dx \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \pi \, dx - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot^{-1}(x) \, dx \] The first integral evaluates to: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \pi \, dx = \pi \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \pi \cdot \pi = \pi^2 \] Thus, we have: \[ I = \pi^2 - I \] ### Step 4: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \pi^2 \] \[ I = \frac{\pi^2}{2} \] ### Step 5: Apply the Greatest Integer Function Since the problem states that we need to apply the greatest integer function, we need to find \( \lfloor I \rfloor \): \[ \lfloor I \rfloor = \lfloor \frac{\pi^2}{2} \rfloor \] Using the approximation \( \pi \approx 3.14 \): \[ \frac{\pi^2}{2} \approx \frac{(3.14)^2}{2} \approx \frac{9.8596}{2} \approx 4.9298 \] Thus, \( \lfloor \frac{\pi^2}{2} \rfloor = 4 \). ### Final Answer The value of \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cot^{-1}(x) \, dx \) (where the greatest integer function is applied) is: \[ \lfloor I \rfloor = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |