Home
Class 12
MATHS
The value of int(0)^(2)[x^(2)-x+1] dx (w...

The value of `int_(0)^(2)[x^(2)-x+1] dx` (where , [.] denotes the greatest integer function ) is equal to

A

`(5+sqrt5)/(2)`

B

`(1+sqrt5)/(2)`

C

`(1-sqrt5)/(2)`

D

`(5-sqrt5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} [x^2 - x + 1] \, dx \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Define the function Let \( f(x) = x^2 - x + 1 \). ### Step 2: Find the range of \( f(x) \) on the interval [0, 2] We will evaluate \( f(x) \) at the endpoints and find its minimum value in the interval. 1. Calculate \( f(0) \): \[ f(0) = 0^2 - 0 + 1 = 1 \] 2. Calculate \( f(2) \): \[ f(2) = 2^2 - 2 + 1 = 3 \] 3. Find the critical points by taking the derivative and setting it to zero: \[ f'(x) = 2x - 1 \] Setting \( f'(x) = 0 \): \[ 2x - 1 = 0 \implies x = \frac{1}{2} \] 4. Calculate \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 3: Determine the greatest integer function values Now we have: - \( f(0) = 1 \) - \( f\left(\frac{1}{2}\right) = \frac{3}{4} \) - \( f(2) = 3 \) The minimum value of \( f(x) \) in the interval [0, 2] is \( \frac{3}{4} \) and the maximum is \( 3 \). ### Step 4: Identify the intervals for the greatest integer function - For \( x \in [0, \frac{1}{2}) \), \( f(x) \) ranges from \( 1 \) to \( \frac{3}{4} \) (but since \( f(x) \) is always greater than \( \frac{3}{4} \), the greatest integer is \( 0 \)). - For \( x = \frac{1}{2} \), \( f\left(\frac{1}{2}\right) = \frac{3}{4} \) (greatest integer is \( 0 \)). - For \( x \in (\frac{1}{2}, 2] \), \( f(x) \) ranges from \( \frac{3}{4} \) to \( 3 \) (greatest integer is \( 1 \) for \( x \in (\frac{1}{2}, 1) \) and \( 2 \) for \( x \in [1, 2] \)). ### Step 5: Set up the integral We can break the integral into parts based on the intervals: \[ \int_{0}^{2} [f(x)] \, dx = \int_{0}^{\frac{1}{2}} [f(x)] \, dx + \int_{\frac{1}{2}}^{1} [f(x)] \, dx + \int_{1}^{2} [f(x)] \, dx \] ### Step 6: Evaluate each integral 1. For \( x \in [0, \frac{1}{2}) \): \[ \int_{0}^{\frac{1}{2}} [f(x)] \, dx = \int_{0}^{\frac{1}{2}} 0 \, dx = 0 \] 2. For \( x \in [\frac{1}{2}, 1) \): \[ \int_{\frac{1}{2}}^{1} [f(x)] \, dx = \int_{\frac{1}{2}}^{1} 0 \, dx = 0 \] 3. For \( x \in [1, 2] \): \[ \int_{1}^{2} [f(x)] \, dx = \int_{1}^{2} 1 \, dx = 1 \] ### Step 7: Combine the results Now, we combine the results from each interval: \[ \int_{0}^{2} [f(x)] \, dx = 0 + 0 + 1 = 1 \] ### Final Answer Thus, the value of \( \int_{0}^{2} [x^2 - x + 1] \, dx \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |