Home
Class 12
MATHS
Evaluate int0^a[x^n]dx, (where,[*] denot...

Evaluate `int_0^a[x^n]dx,` (where,[*] denotes the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^a [x^n] \, dx \), where \( [x^n] \) denotes the greatest integer function (also known as the floor function), we can break down the problem into manageable steps. ### Step 1: Understand the Greatest Integer Function The greatest integer function \( [x^n] \) gives the largest integer less than or equal to \( x^n \). For \( x \) in the interval \( [0, a] \), we need to determine the integer values that \( [x^n] \) can take. ### Step 2: Determine the Intervals For \( x \) in the range \( [0, a] \): - When \( x \) is in the interval \( [k^{1/n}, (k+1)^{1/n}) \) for \( k = 0, 1, 2, \ldots, [a^n] \), we have \( [x^n] = k \). ### Step 3: Set Up the Integral We can express the integral as a sum of integrals over the intervals where \( [x^n] \) is constant: \[ \int_0^a [x^n] \, dx = \sum_{k=0}^{[a^n]} k \int_{k^{1/n}}^{(k+1)^{1/n}} 1 \, dx \] ### Step 4: Evaluate Each Integral The integral \( \int_{k^{1/n}}^{(k+1)^{1/n}} 1 \, dx \) is simply the length of the interval: \[ \int_{k^{1/n}}^{(k+1)^{1/n}} 1 \, dx = (k+1)^{1/n} - k^{1/n} \] ### Step 5: Combine the Results Thus, we can rewrite the integral as: \[ \int_0^a [x^n] \, dx = \sum_{k=0}^{[a^n]} k \left( (k+1)^{1/n} - k^{1/n} \right) \] ### Step 6: Simplify the Expression This sum can be evaluated by recognizing that it is a finite series. We can compute it explicitly for small values of \( n \) or \( a \), or use numerical methods for larger values. ### Final Result The final expression for the integral is: \[ \int_0^a [x^n] \, dx = \sum_{k=0}^{[a^n]} k \left( (k+1)^{1/n} - k^{1/n} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |