Home
Class 12
MATHS
If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(wher...

If `f(n)=(int_0^n[x]dx)/(int_0^n{x}dx)`(where,[*] and {*} denotes greatest integer and fractional part of x and `n in N).` Then, the value of `f(4)` is...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) \) defined as: \[ f(n) = \frac{\int_0^n [x] \, dx}{\int_0^n \{x\} \, dx} \] where \([x]\) is the greatest integer function and \(\{x\}\) is the fractional part of \(x\). ### Step 1: Evaluate the numerator \(\int_0^n [x] \, dx\) The greatest integer function \([x]\) takes the following values in the intervals: - For \(0 \leq x < 1\), \([x] = 0\) - For \(1 \leq x < 2\), \([x] = 1\) - For \(2 \leq x < 3\), \([x] = 2\) - For \(3 \leq x < 4\), \([x] = 3\) - For \(n\) (where \(n\) is a natural number), \([x] = n-1\) for \(n-1 \leq x < n\) Thus, we can break the integral into segments: \[ \int_0^n [x] \, dx = \int_0^1 0 \, dx + \int_1^2 1 \, dx + \int_2^3 2 \, dx + \int_3^4 3 \, dx + \int_4^n (n-1) \, dx \] Calculating each part: - \(\int_0^1 0 \, dx = 0\) - \(\int_1^2 1 \, dx = 1\) - \(\int_2^3 2 \, dx = 2\) - \(\int_3^4 3 \, dx = 3\) - \(\int_4^n (n-1) \, dx = (n-1)(n-4)\) Adding these together gives: \[ \int_0^n [x] \, dx = 0 + 1 + 2 + 3 + (n-1)(n-4) = 6 + (n-1)(n-4) \] ### Step 2: Evaluate the denominator \(\int_0^n \{x\} \, dx\) The fractional part \(\{x\}\) can be expressed as \(\{x\} = x - [x]\). Thus: \[ \int_0^n \{x\} \, dx = \int_0^n (x - [x]) \, dx = \int_0^n x \, dx - \int_0^n [x] \, dx \] Calculating \(\int_0^n x \, dx\): \[ \int_0^n x \, dx = \frac{n^2}{2} \] Now we already have \(\int_0^n [x] \, dx\) from Step 1, so we can substitute: \[ \int_0^n \{x\} \, dx = \frac{n^2}{2} - (6 + (n-1)(n-4)) \] Simplifying the denominator: \[ \int_0^n \{x\} \, dx = \frac{n^2}{2} - 6 - (n^2 - 5n + 4) = \frac{n^2}{2} - 6 - n^2 + 5n - 4 \] Combining terms gives: \[ \int_0^n \{x\} \, dx = -\frac{n^2}{2} + 5n - 10 \] ### Step 3: Combine the results to find \( f(n) \) Now substituting back into the function \( f(n) \): \[ f(n) = \frac{6 + (n-1)(n-4)}{-\frac{n^2}{2} + 5n - 10} \] ### Step 4: Evaluate \( f(4) \) Substituting \( n = 4 \): Numerator: \[ 6 + (4-1)(4-4) = 6 + 3 \cdot 0 = 6 \] Denominator: \[ -\frac{4^2}{2} + 5 \cdot 4 - 10 = -8 + 20 - 10 = 2 \] Thus: \[ f(4) = \frac{6}{2} = 3 \] ### Final Answer: The value of \( f(4) \) is \( \boxed{3} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (int0n[x]dx)/(int0n{x}dx)(w h e r e[x]a n d{x} are integral and fractional parts of xa n dn in N)dot

If int_0^x[x]dx=int_0^([x]) xdx,x !in integer (where, [*] and {*} denotes the greatest integer and fractional parts respectively,then the value of 4{x} is equal to ...

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

The value of int_(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

Evaluate : (i) int_(-1)^(2){2x}dx (where function {*} denotes fractional part function) (ii) int_(0)^(10x)(|sinx|+|cosx|) dx (iii) (int_(0)^(n)[x]dx)/(int_(0)^(n)[x]dx) where [x] and {x} are integral and fractional parts of the x and n in N (iv) int_(0)^(210)(|sinx|-[|(sinx)/(2)|])dx (where [] denotes the greatest integer function and n in 1 )

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of x satisfying int_(0)^(2[x+14]){(x)/(2)} dx=int_(0)^({x})[x+14] dx is equal to (where, [.] and {.} denotes the greates integer and fractional part of x)

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |