Home
Class 12
MATHS
If int0^x[x]dx=int0^([x]) xdx,x !in inte...

If `int_0^x[x]dx=int_0^([x]) xdx,x !in` integer (where, [*] and {*} denotes the greatest integer and fractional parts respectively,then the value of `4{x}` is equal to ...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral equation and find the value of \(4\{x\}\), where \(\{x\}\) is the fractional part of \(x\) and \([x]\) is the greatest integer less than or equal to \(x\). ### Step-by-Step Solution: 1. **Understanding the Integral**: We start with the equation: \[ \int_0^x [x] \, dx = \int_0^{[x]} x \, dx \] where \(x\) is not an integer. 2. **Evaluating the Left Side**: The left-hand side involves the greatest integer function \([x]\). We can express \(x\) as \(n + f\), where \(n = [x]\) (the integer part) and \(f = \{x\}\) (the fractional part). Thus, we can break the integral into segments: \[ \int_0^x [x] \, dx = \int_0^1 0 \, dx + \int_1^2 1 \, dx + \int_2^3 2 \, dx + \ldots + \int_{n-1}^n (n-1) \, dx + \int_n^{n+f} n \, dx \] This simplifies to: \[ = 0 + 1 + 2 + \ldots + (n-1) + n \cdot f \] The sum of the first \(n-1\) integers is: \[ \frac{(n-1)n}{2} \] Therefore, the left-hand side becomes: \[ \frac{(n-1)n}{2} + nf \] 3. **Evaluating the Right Side**: The right-hand side is: \[ \int_0^{[x]} x \, dx = \int_0^n x \, dx = \left[\frac{x^2}{2}\right]_0^n = \frac{n^2}{2} \] 4. **Setting the Two Sides Equal**: We equate the two sides: \[ \frac{(n-1)n}{2} + nf = \frac{n^2}{2} \] 5. **Simplifying the Equation**: Rearranging gives: \[ nf = \frac{n^2}{2} - \frac{(n-1)n}{2} \] Simplifying the right-hand side: \[ nf = \frac{n^2 - (n^2 - n)}{2} = \frac{n}{2} \] Thus, we have: \[ f = \frac{1}{2} \] 6. **Finding \(4\{x\}\)**: Since \(f = \{x\}\), we find: \[ 4\{x\} = 4f = 4 \cdot \frac{1}{2} = 2 \] ### Final Answer: The value of \(4\{x\}\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

Solve the equation [x]{x}=x, where [] and {} denote the greatest integer function and fractional part, respectively.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

The value of int_(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 3
  1. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  2. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  3. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  4. The value of int(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greates...

    Text Solution

    |

  5. The value of int0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denot...

    Text Solution

    |

  6. The value of int(0)^(4) {x} dx (where , {.} denotes fractional part of...

    Text Solution

    |

  7. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  8. The value of int(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest ...

    Text Solution

    |

  9. The value of int(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greate...

    Text Solution

    |

  10. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the gre...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes gr...

    Text Solution

    |

  14. The value of int0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greates...

    Text Solution

    |

  16. Evaluate int0^a[x^n]dx, (where,[*] denotes the greatest integer functi...

    Text Solution

    |

  17. Prove that int(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denote...

    Text Solution

    |

  18. If f(n)=(int0^n[x]dx)/(int0^n{x}dx)(where,[*] and {*} denotes greatest...

    Text Solution

    |

  19. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  20. If int0^x[x]dx=int0^([x]) xdx,x !in integer (where, [*] and {*} denote...

    Text Solution

    |