Home
Class 12
MATHS
If [*] denots the greatest integer funct...

If [*] denots the greatest integer function then the value of the integeral `underset(-pi//2)overset(pi//2)int([(x)/(pi)]+0.5) dx`, is

A

`pi`

B

`(pi)/(2)`

C

0

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \left[ \frac{x}{\pi} \right] + 0.5 \right) dx, \] we will follow these steps: ### Step 1: Identify the function Let \( f(x) = \left[ \frac{x}{\pi} \right] + 0.5 \). ### Step 2: Determine the behavior of the function The greatest integer function \( \left[ \frac{x}{\pi} \right] \) will take different values depending on the interval of \( x \): - For \( x \) in \( \left[-\frac{\pi}{2}, 0\right) \), \( \frac{x}{\pi} \) is in \( \left[-\frac{1}{2}, 0\right) \), so \( \left[ \frac{x}{\pi} \right] = -1 \). - For \( x = 0 \), \( \left[ \frac{x}{\pi} \right] = 0 \). - For \( x \) in \( \left(0, \frac{\pi}{2}\right) \), \( \frac{x}{\pi} \) is in \( \left(0, \frac{1}{2}\right) \), so \( \left[ \frac{x}{\pi} \right] = 0 \). Thus, we can express \( f(x) \) as: - \( f(x) = -1 + 0.5 = -0.5 \) for \( x \in \left[-\frac{\pi}{2}, 0\right) \) - \( f(x) = 0 + 0.5 = 0.5 \) for \( x \in \left(0, \frac{\pi}{2}\right) \) ### Step 3: Split the integral Now, we can split the integral into two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = \int_{-\frac{\pi}{2}}^{0} f(x) \, dx + \int_{0}^{\frac{\pi}{2}} f(x) \, dx \] ### Step 4: Evaluate each part 1. For \( x \in \left[-\frac{\pi}{2}, 0\right) \): \[ \int_{-\frac{\pi}{2}}^{0} f(x) \, dx = \int_{-\frac{\pi}{2}}^{0} (-0.5) \, dx = -0.5 \cdot \left(0 - \left(-\frac{\pi}{2}\right)\right) = -0.5 \cdot \frac{\pi}{2} = -\frac{\pi}{4} \] 2. For \( x \in \left(0, \frac{\pi}{2}\right) \): \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} (0.5) \, dx = 0.5 \cdot \left(\frac{\pi}{2} - 0\right) = 0.5 \cdot \frac{\pi}{2} = \frac{\pi}{4} \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = -\frac{\pi}{4} + \frac{\pi}{4} = 0 \] ### Final Answer Thus, the value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equal to

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

IfI=int_(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greatest integer function), then the value of I is -40 (b) 40 (c) 20 (d) -20

The value of underset(0)overset(pi//2)int logtan xdx , is

If [ ] denotes the greatest integer function, lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2) is

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |