Home
Class 12
MATHS
The equation int(-pi/4)^(pi/4){a|sinx|+(...

The equation `int_(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0` where `a,b,c` are constants gives a relation between

A

a, b and c

B

a and c

C

a and b

D

b and c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( a |\sin x| + \frac{b \sin x}{1 + \cos^2 x} + c \right) dx = 0, \] where \( a, b, c \) are constants, we will break the integral into two parts based on the behavior of the sine function over the interval \([- \frac{\pi}{4}, \frac{\pi}{4}]\). ### Step 1: Break the Integral into Two Parts The sine function is negative in the interval \([- \frac{\pi}{4}, 0]\) and positive in the interval \([0, \frac{\pi}{4}]\). Thus, we can rewrite the integral as: \[ \int_{-\frac{\pi}{4}}^{0} \left( -a \sin x + \frac{b \sin x}{1 + \cos^2 x} + c \right) dx + \int_{0}^{\frac{\pi}{4}} \left( a \sin x + \frac{b \sin x}{1 + \cos^2 x} + c \right) dx = 0. \] ### Step 2: Evaluate Each Integral Now we evaluate each part separately. 1. **For the first integral** from \(-\frac{\pi}{4}\) to \(0\): \[ \int_{-\frac{\pi}{4}}^{0} \left( -a \sin x + \frac{b \sin x}{1 + \cos^2 x} + c \right) dx = -a \int_{-\frac{\pi}{4}}^{0} \sin x \, dx + b \int_{-\frac{\pi}{4}}^{0} \frac{\sin x}{1 + \cos^2 x} \, dx + c \int_{-\frac{\pi}{4}}^{0} dx. \] 2. **For the second integral** from \(0\) to \(\frac{\pi}{4}\): \[ \int_{0}^{\frac{\pi}{4}} \left( a \sin x + \frac{b \sin x}{1 + \cos^2 x} + c \right) dx = a \int_{0}^{\frac{\pi}{4}} \sin x \, dx + b \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{1 + \cos^2 x} \, dx + c \int_{0}^{\frac{\pi}{4}} dx. \] ### Step 3: Combine the Results Combining the two integrals, we have: \[ -a \left[ -\cos x \right]_{-\frac{\pi}{4}}^{0} + b \int_{-\frac{\pi}{4}}^{0} \frac{\sin x}{1 + \cos^2 x} \, dx + c \left[ x \right]_{-\frac{\pi}{4}}^{0} + a \left[ -\cos x \right]_{0}^{\frac{\pi}{4}} + b \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{1 + \cos^2 x} \, dx + c \left[ x \right]_{0}^{\frac{\pi}{4}} = 0. \] ### Step 4: Evaluate the Limits 1. Evaluating the limits for \(-a \left[ -\cos x \right]_{-\frac{\pi}{4}}^{0}\): \[ -a \left( -\cos(0) + \cos\left(-\frac{\pi}{4}\right) \right) = -a \left( -1 + \frac{1}{\sqrt{2}} \right) = a \left( 1 - \frac{1}{\sqrt{2}} \right). \] 2. Evaluating the limits for \(a \left[ -\cos x \right]_{0}^{\frac{\pi}{4}}\): \[ a \left( -\cos\left(\frac{\pi}{4}\right) + \cos(0) \right) = a \left( -\frac{1}{\sqrt{2}} + 1 \right) = a \left( 1 - \frac{1}{\sqrt{2}} \right). \] 3. Evaluating the constant terms: \[ c \left[ x \right]_{-\frac{\pi}{4}}^{0} = c \left( 0 + \frac{\pi}{4} \right) = \frac{c \pi}{4}, \] \[ c \left[ x \right]_{0}^{\frac{\pi}{4}} = c \left( \frac{\pi}{4} - 0 \right) = \frac{c \pi}{4}. \] ### Step 5: Combine Everything to Form the Equation Combining all parts, we have: \[ a \left( 1 - \frac{1}{\sqrt{2}} \right) + a \left( 1 - \frac{1}{\sqrt{2}} \right) + b \left( \text{integrals} \right) + \frac{c \pi}{2} = 0. \] ### Step 6: Final Relation This leads to the relation: \[ 2a \left( 1 - \frac{1}{\sqrt{2}} \right) + b \left( \text{integrals} \right) + \frac{c \pi}{2} = 0. \] This is the required relation between \(a\), \(b\), and \(c\).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The equation int_(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=0 where a,b,c are constants, gives a relation between

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

If int_(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 where a, b, c are constants, then c=

int_(0)^(pi//4) sinx(x) =?

int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

int_0^(pi/2) (dx)/(4+sinx)

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |