Home
Class 12
MATHS
The value of int(-2)^(2)(sin^(2)x)/([(x)...

The value of `int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx` where [.] denotes greatest integer function , is

A

1

B

0

C

`4 sin4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-2}^{2} \frac{\sin^2 x}{\left(\frac{x}{\pi}\right) + \frac{1}{2}} \, dx, \] we will determine whether the function \( f(x) = \frac{\sin^2 x}{\left(\frac{x}{\pi}\right) + \frac{1}{2}} \) is odd or even. ### Step 1: Check if \( f(x) \) is odd or even To check if \( f(x) \) is odd, we need to evaluate \( f(-x) \): \[ f(-x) = \frac{\sin^2(-x)}{\left(\frac{-x}{\pi}\right) + \frac{1}{2}}. \] Using the property of sine, we know that \( \sin(-x) = -\sin(x) \), thus: \[ \sin^2(-x) = \sin^2(x). \] Now substituting this into \( f(-x) \): \[ f(-x) = \frac{\sin^2 x}{\left(-\frac{x}{\pi}\right) + \frac{1}{2}} = \frac{\sin^2 x}{-\frac{x}{\pi} + \frac{1}{2}}. \] ### Step 2: Simplify \( f(-x) \) We can rewrite \( f(-x) \): \[ f(-x) = \frac{\sin^2 x}{-\left(\frac{x}{\pi} - \frac{1}{2}\right)} = -\frac{\sin^2 x}{\left(\frac{x}{\pi} - \frac{1}{2}\right)}. \] Now, we can express \( f(-x) \) in terms of \( f(x) \): \[ f(-x) = -\frac{\sin^2 x}{\left(\frac{x}{\pi} - \frac{1}{2}\right)} = -f(x). \] ### Step 3: Conclusion about the function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 4: Evaluating the integral For any odd function \( f(x) \), the integral over a symmetric interval \([-a, a]\) is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, we have: \[ I = \int_{-2}^{2} f(x) \, dx = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is (a)1 (b) 1//2 (c) 2 (d) none of these

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

Evaluate int_(4)^(6)([x^(2)])/([x^(2)-20x+100]+[x^(2)])dx where [.] denotes the greatest integer function.

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |