Home
Class 12
MATHS
Let f(x) be a contiuous function such a ...

Let `f(x)` be a contiuous function such a `int_n^(n+1) f(x)dx=n^3, n in Z.` Then, the value of the intergral `int_-3^3 f(x) dx` (A) 9 (B) `-27` (C) `-9` (D) none of these

A

9

B

`-27`

C

`-9`

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-3}^{3} f(x) \, dx \) given that \( \int_{n}^{n+1} f(x) \, dx = n^3 \) for \( n \in \mathbb{Z} \). ### Step 1: Break down the integral from -3 to 3 We can express the integral \( \int_{-3}^{3} f(x) \, dx \) as a sum of integrals over smaller intervals: \[ \int_{-3}^{3} f(x) \, dx = \int_{-3}^{-2} f(x) \, dx + \int_{-2}^{-1} f(x) \, dx + \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \] ### Step 2: Apply the given condition for each interval According to the problem, for each integer \( n \): - For \( n = -3 \): \[ \int_{-3}^{-2} f(x) \, dx = (-3)^3 = -27 \] - For \( n = -2 \): \[ \int_{-2}^{-1} f(x) \, dx = (-2)^3 = -8 \] - For \( n = -1 \): \[ \int_{-1}^{0} f(x) \, dx = (-1)^3 = -1 \] - For \( n = 0 \): \[ \int_{0}^{1} f(x) \, dx = 0^3 = 0 \] - For \( n = 1 \): \[ \int_{1}^{2} f(x) \, dx = 1^3 = 1 \] - For \( n = 2 \): \[ \int_{2}^{3} f(x) \, dx = 2^3 = 8 \] ### Step 3: Combine all the results Now we can combine all these results: \[ \int_{-3}^{3} f(x) \, dx = (-27) + (-8) + (-1) + 0 + 1 + 8 \] ### Step 4: Simplify the expression Calculating this step by step: - First, combine the negative values: \[ -27 - 8 - 1 = -36 \] - Now add the positive values: \[ -36 + 0 + 1 + 8 = -36 + 9 = -27 \] ### Final Answer Thus, the value of the integral \( \int_{-3}^{3} f(x) \, dx \) is: \[ \boxed{-27} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f(x)=max. {2-x,2,1+x} then int_(-1)^1 f(x)dx= (A) 0 (B) 2 (C) 9/2 (D) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |