Home
Class 12
MATHS
Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^...

Let `f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt` is equal to

A

0

B

`alpha`

C

`2 alpha`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the integral \( \int_{-1}^{1} t^3 f(t) dt \) where \( f(t) = \frac{e^t + 1}{e^t - 1} \). ### Step 1: Define the function We start with the given function: \[ f(t) = \frac{e^t + 1}{e^t - 1} \] ### Step 2: Determine the nature of \( t^3 f(t) \) Next, we need to analyze the function \( g(t) = t^3 f(t) \): \[ g(t) = t^3 \cdot \frac{e^t + 1}{e^t - 1} \] ### Step 3: Check if \( g(t) \) is even or odd To check if \( g(t) \) is even or odd, we compute \( g(-t) \): \[ g(-t) = (-t)^3 \cdot \frac{e^{-t} + 1}{e^{-t} - 1} = -t^3 \cdot \frac{e^{-t} + 1}{e^{-t} - 1} \] We can simplify \( \frac{e^{-t} + 1}{e^{-t} - 1} \): \[ \frac{e^{-t} + 1}{e^{-t} - 1} = \frac{1 + e^t}{1 - e^t} = -\frac{1 + e^t}{e^t - 1} \] Thus, \[ g(-t) = -t^3 \cdot \left(-\frac{1 + e^t}{e^t - 1}\right) = t^3 \cdot \frac{1 + e^t}{e^t - 1} \] This shows that: \[ g(-t) = g(t) \] indicating that \( g(t) \) is an even function. ### Step 4: Evaluate the integral Since \( g(t) \) is even, we can use the property of even functions in integrals: \[ \int_{-1}^{1} g(t) dt = 2 \int_{0}^{1} g(t) dt \] Thus, \[ \int_{-1}^{1} t^3 f(t) dt = 2 \int_{0}^{1} t^3 f(t) dt \] ### Step 5: Substitute the value of \( \int_{0}^{1} t^3 f(t) dt \) From the problem statement, we know: \[ \int_{0}^{1} t^3 f(t) dt = \alpha \] Therefore, \[ \int_{-1}^{1} t^3 f(t) dt = 2 \alpha \] ### Final Answer The final result is: \[ \int_{-1}^{1} t^3 f(t) dt = 2\alpha \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(1)^(e) (e^(x) (1+xlog x))/(x) dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

Let l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2)) is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |