Home
Class 12
MATHS
The value of int(-2)^(2) |[x]| dx is equ...

The value of `int_(-2)^(2) |[x]| dx` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} |x| \, dx \), we will break it down into manageable parts by considering the definition of the absolute value function. ### Step-by-step solution: 1. **Identify the intervals**: The function \( |x| \) can be expressed differently depending on the value of \( x \): - For \( x < 0 \), \( |x| = -x \) - For \( x \geq 0 \), \( |x| = x \) Therefore, we can split the integral at \( x = 0 \): \[ \int_{-2}^{2} |x| \, dx = \int_{-2}^{0} |x| \, dx + \int_{0}^{2} |x| \, dx \] 2. **Evaluate the first integral** \( \int_{-2}^{0} |x| \, dx \): - In this interval, \( |x| = -x \): \[ \int_{-2}^{0} |x| \, dx = \int_{-2}^{0} -x \, dx \] - Now, compute the integral: \[ = -\left[ \frac{x^2}{2} \right]_{-2}^{0} = -\left( \frac{0^2}{2} - \frac{(-2)^2}{2} \right) = -\left( 0 - \frac{4}{2} \right) = -(-2) = 2 \] 3. **Evaluate the second integral** \( \int_{0}^{2} |x| \, dx \): - In this interval, \( |x| = x \): \[ \int_{0}^{2} |x| \, dx = \int_{0}^{2} x \, dx \] - Now, compute the integral: \[ = \left[ \frac{x^2}{2} \right]_{0}^{2} = \left( \frac{2^2}{2} - \frac{0^2}{2} \right) = \left( \frac{4}{2} - 0 \right) = 2 \] 4. **Combine the results**: \[ \int_{-2}^{2} |x| \, dx = \int_{-2}^{0} |x| \, dx + \int_{0}^{2} |x| \, dx = 2 + 2 = 4 \] Thus, the value of the integral \( \int_{-2}^{2} |x| \, dx \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) [x^(2)]dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

int_(0)^(2) |x^(2)+2x-3|dx is equal to

The value of int_(-2)^2|1-x^2|dx is_______

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of int(cos2x)/(cosx) dx is equal to

The value of int_(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest integer less than or equal to x)

The value of int_(0)^(2npi)[sin x cos x] dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |