Home
Class 12
MATHS
Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt ...

Let `f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1)`, for all `x in R`.Then,the value of `int_-3^3 g(x)dx` is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-3}^{3} g(x) \, dx \), where \( g(x) = f(x-1) + f(x+1) \) and \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 1 - |x| & \text{if } |x| \leq 1 \\ 0 & \text{if } |x| > 1 \end{cases} \] ### Step 1: Understand the function \( f(x) \) The function \( f(x) \) is a triangular function that peaks at \( x = 0 \) and is equal to 1 at that point. It decreases linearly to 0 at \( x = -1 \) and \( x = 1 \). For values of \( x \) outside the interval \([-1, 1]\), \( f(x) = 0 \). ### Step 2: Determine \( f(x-1) \) and \( f(x+1) \) 1. **For \( f(x-1) \)**: - \( f(x-1) = 1 - |x-1| \) if \( |x-1| \leq 1 \) (which means \( 0 \leq x \leq 2 \)) - \( f(x-1) = 0 \) if \( |x-1| > 1 \) (which means \( x < 0 \) or \( x > 2 \)) 2. **For \( f(x+1) \)**: - \( f(x+1) = 1 - |x+1| \) if \( |x+1| \leq 1 \) (which means \( -2 \leq x \leq 0 \)) - \( f(x+1) = 0 \) if \( |x+1| > 1 \) (which means \( x < -2 \) or \( x > 0 \)) ### Step 3: Combine \( f(x-1) \) and \( f(x+1) \) to find \( g(x) \) Now, we can express \( g(x) \): - For \( -2 \leq x < 0 \): - \( g(x) = f(x-1) + f(x+1) = 0 + (1 - |x+1|) = 1 - (-(x+1)) = x + 2 \) - For \( 0 \leq x \leq 2 \): - \( g(x) = f(x-1) + f(x+1) = (1 - |x-1|) + 0 = 1 - (x-1) = 2 - x \) - For \( x < -2 \) or \( x > 2 \): - \( g(x) = 0 \) ### Step 4: Determine the intervals for \( g(x) \) Thus, we have: - \( g(x) = x + 2 \) for \( -2 \leq x < 0 \) - \( g(x) = 2 - x \) for \( 0 \leq x \leq 2 \) - \( g(x) = 0 \) for \( x < -2 \) or \( x > 2 \) ### Step 5: Calculate the integral \( \int_{-3}^{3} g(x) \, dx \) We can break the integral into three parts: 1. From \( -3 \) to \( -2 \): \( g(x) = 0 \) 2. From \( -2 \) to \( 0 \): \( g(x) = x + 2 \) 3. From \( 0 \) to \( 2 \): \( g(x) = 2 - x \) 4. From \( 2 \) to \( 3 \): \( g(x) = 0 \) Calculating the integral: \[ \int_{-3}^{3} g(x) \, dx = \int_{-2}^{0} (x + 2) \, dx + \int_{0}^{2} (2 - x) \, dx \] ### Step 6: Evaluate the integrals 1. **For \( \int_{-2}^{0} (x + 2) \, dx \)**: \[ = \left[ \frac{x^2}{2} + 2x \right]_{-2}^{0} = \left( 0 + 0 \right) - \left( \frac{(-2)^2}{2} + 2(-2) \right) = 0 - (2 - 4) = 2 \] 2. **For \( \int_{0}^{2} (2 - x) \, dx \)**: \[ = \left[ 2x - \frac{x^2}{2} \right]_{0}^{2} = \left( 4 - 2 \right) - (0) = 2 \] ### Step 7: Combine the results Thus, the total integral is: \[ \int_{-3}^{3} g(x) \, dx = 2 + 2 = 4 \] ### Final Answer The value of \( \int_{-3}^{3} g(x) \, dx \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

Let f(x)=1+x , 0 leq x leq 2 and f(x)=3−x , 2 lt x leq 3 . Find f(f(x)) .

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

Let f(x) be a function satisfying f'(x)=f(x) with f(0) =1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1f(x) g(x) dx , is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 4
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. The value of int(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

    Text Solution

    |

  4. If f is an odd function, then evaluate I=int(-a)^a(f(sinx)dx)/(f(cosx...

    Text Solution

    |

  5. Evaluate: int-(1/sqrt(3))^(1/sqrt(3)) (cos^-1((2x)/(1+x^2))+tan^-1((2x...

    Text Solution

    |

  6. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  7. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)1/(1+e^(sin x))dx

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Let f(x) be a contiuous function such a intn^(n+1) f(x)dx=n^3, n in Z...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. Find the second order derivative if y= e^(2x)

    Text Solution

    |

  17. Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1), for...

    Text Solution

    |

  18. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  19. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |