Home
Class 12
MATHS
The poins of extremum of phi(x)=underse...

The poins of extremum of `phi(x)=underset(1)overset(x)inte^(-t^(2)//2) (1-t^(2))dt` are

A

`x=1,-1`

B

`x=-1,2`

C

`x=2,1`

D

`x=-2,1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of extremum of the function \[ \phi(x) = \int_{1}^{x} e^{-\frac{t^2}{2}} (1 - t^2) dt, \] we will follow these steps: ### Step 1: Differentiate the function To find the points of extremum, we first need to differentiate the function \(\phi(x)\). We can use the Leibniz rule for differentiation under the integral sign. According to this rule: \[ \frac{d}{dx} \left( \int_{g(x)}^{h(x)} f(t) dt \right) = f(h(x)) h'(x) - f(g(x)) g'(x). \] In our case, \(g(x) = 1\) and \(h(x) = x\), and \(f(t) = e^{-\frac{t^2}{2}} (1 - t^2)\). Thus, we have: \[ \phi'(x) = f(x) \cdot 1 - f(1) \cdot 0 = e^{-\frac{x^2}{2}} (1 - x^2). \] ### Step 2: Set the derivative to zero To find the points of extremum, we set the derivative equal to zero: \[ e^{-\frac{x^2}{2}} (1 - x^2) = 0. \] ### Step 3: Analyze the equation Since \(e^{-\frac{x^2}{2}}\) is never zero (as the exponential function is always positive), we focus on the term \(1 - x^2 = 0\): \[ 1 - x^2 = 0 \implies x^2 = 1. \] ### Step 4: Solve for x Taking the square root of both sides, we find: \[ x = 1 \quad \text{or} \quad x = -1. \] ### Conclusion The points of extremum of the function \(\phi(x)\) are: \[ x = 1 \quad \text{and} \quad x = -1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The points of extremum of underset(0)overset(x^(2))int (t^(2)-5t+4)/(2+e^(t))dt are

If y = underset(u(x))overset(v(x))intf(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = underset(1)overset(x)inte^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)/(t))(1)/(t)dt , then

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

underset(x to oo)lim(overset(2x)underset(0)intte^(t^(2))dt)/(e^(4x^(2))) equals

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) The points of maximum of the function f(x)=int_(0)^(x^(2))(t^(2)-5t+4)/(2+e^(t))dt

The set of critical pionts of the fuction f(x) given by f(x)= x - log _(e)x+underset(2)overset(x)((1)/(t)-2-2cos 4t)dt is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let g(t) = underset(x_(1))overset(x_(2))intf(t,x) dx . Then g'(t) = underset(x_(1))overset(x_(2))int(del)/(delt) (f(t,x))dx , Consider f(x) = underset(0)overset(pi)int (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  13. Let f(x) be an odd continuous function which is periodic with period...

    Text Solution

    |

  14. Let f(x) be a function defined by f(x)=int1^xt(t^2-3t+2)dt,1<=x<=3 The...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |