Home
Class 12
MATHS
Let f:(0,oo)to R and F(x)=int(0)^(x) f(t...

Let `f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x)`, then f(4) equals

A

`(5)/(4)`

B

7

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and apply the necessary mathematical principles. ### Step 1: Understand the given function We are given that \( F(x) = \int_0^x f(t) \, dt \) and \( F(x^2) = x^2(1+x) \). ### Step 2: Differentiate \( F(x^2) \) To find \( f(x) \), we will differentiate \( F(x^2) \) using the chain rule. \[ \frac{d}{dx} F(x^2) = F'(x^2) \cdot \frac{d}{dx}(x^2) \] ### Step 3: Differentiate the right side Now we differentiate the right side \( x^2(1+x) \): \[ \frac{d}{dx}(x^2(1+x)) = \frac{d}{dx}(x^2 + x^3) = 2x + 3x^2 \] ### Step 4: Set the derivatives equal From the differentiation we have: \[ F'(x^2) \cdot 2x = 2x + 3x^2 \] ### Step 5: Solve for \( F'(x^2) \) Now, we can isolate \( F'(x^2) \): \[ F'(x^2) = \frac{2x + 3x^2}{2x} = 1 + \frac{3x}{2} \] ### Step 6: Relate \( F'(x) \) to \( f(x) \) Since \( F'(x) = f(x) \), we can substitute \( x^2 \) back into our expression: \[ f(x^2) = 1 + \frac{3x}{2} \] ### Step 7: Substitute \( x = 2 \) to find \( f(4) \) Now we need to find \( f(4) \). Since \( 4 = 2^2 \), we substitute \( x = 2 \): \[ f(4) = 1 + \frac{3 \cdot 2}{2} = 1 + 3 = 4 \] ### Final Result Thus, the value of \( f(4) \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f: (0,oo)->R and F(x^3)=int_0^ 3f(t)dt, if F(x^3)=x^3(x^2+x+1) .Then f(27)=

f:(0,infty)rarrR and F(x)=int_(0)^(x)t f(t)dt If F(x^(2))=x^(4)+x^(5),"then" Sigma_(r=1)^(12)f(r^(2)) is equal to S

Let f:(0,oo)to R be a continuous function such that F(x)=int_(0)^(x^(2)) tf(t)dt. "If "F(x^(2))=x^(4)+x^(5),"then "sum_(r=1)^(12) f(r^(2))=

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  13. Let f(x) be an odd continuous function which is periodic with period...

    Text Solution

    |

  14. Let f(x) be a function defined by f(x)=int1^xt(t^2-3t+2)dt,1<=x<=3 The...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |