Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dtdot Then the...

Let `f(x)=int_1^xsqrt(2-t^2)dtdot` Then the real roots of the equation , `x^2-f^(prime)(x)=0` are: `+-1` b. `+-1/(sqrt(2))` c.`+-1/2` d. `0&1`

A

`pm 1`

B

`pm(1)/(sqrt2)`

C

`pm(1)/(2)`

D

`pmsqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Define the Function We start with the function defined as: \[ f(x) = \int_1^x \sqrt{2 - t^2} \, dt \] ### Step 2: Differentiate the Function Using the Leibniz rule for differentiation under the integral sign, we find the derivative \( f'(x) \): \[ f'(x) = \sqrt{2 - x^2} \] ### Step 3: Set Up the Equation We need to solve the equation: \[ x^2 - f'(x) = 0 \] Substituting \( f'(x) \) into the equation gives: \[ x^2 - \sqrt{2 - x^2} = 0 \] ### Step 4: Rearranging the Equation Rearranging the equation, we have: \[ x^2 = \sqrt{2 - x^2} \] ### Step 5: Square Both Sides To eliminate the square root, we square both sides: \[ (x^2)^2 = (2 - x^2) \] This simplifies to: \[ x^4 = 2 - x^2 \] ### Step 6: Rearranging to Form a Polynomial Rearranging gives us a polynomial equation: \[ x^4 + x^2 - 2 = 0 \] ### Step 7: Substitute \( y = x^2 \) Let \( y = x^2 \). Then the equation becomes: \[ y^2 + y - 2 = 0 \] ### Step 8: Factor the Quadratic Factoring the quadratic, we have: \[ (y - 1)(y + 2) = 0 \] ### Step 9: Solve for \( y \) Setting each factor to zero gives: 1. \( y - 1 = 0 \) → \( y = 1 \) 2. \( y + 2 = 0 \) → \( y = -2 \) (not valid since \( y = x^2 \) cannot be negative) ### Step 10: Find \( x \) Since \( y = x^2 \), we have: \[ x^2 = 1 \implies x = \pm 1 \] ### Conclusion The real roots of the equation \( x^2 - f'(x) = 0 \) are: \[ x = 1 \quad \text{and} \quad x = -1 \] Thus, the answer is option **A: \( \pm 1 \)**. ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

Number of roots of the equation 2sqrt(2x+1)=2x-1 is 0 (b) 1 (c) 2 (d) 3

Number of roots of the equation 2sqrt(2x+1)=2x-1 is 0 (b) 1 (c) 2 (d) 3

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

Number of real roots of the equation 2^x+2^(x-1)+2^(x-2)=7^x+7^(x-1)+7^(x-2) is (A) 4 (B) 2 (C) 1 (D) 0

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)= max{tanx, cotx} . Then number of roots of the equation f(x)= 1/sqrt(3) in (0,2pi) is (A) 2 (B) 4 (C) 0 (D) infinite

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  13. Let f(x) be an odd continuous function which is periodic with period...

    Text Solution

    |

  14. Let f(x) be a function defined by f(x)=int1^xt(t^2-3t+2)dt,1<=x<=3 The...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |