Home
Class 12
MATHS
Let f(x) be a function defined by f(x)=i...

Let f(x) be a function defined by `f(x)=int_1^xt(t^2-3t+2)dt,1<=x<=3` Then the range of f(x) is

A

`[0,2]`

B

`[-(1)/(4),4]`

C

`[-(1)/(4),2]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \int_1^x t(t^2 - 3t + 2) \, dt \) for \( 1 \leq x \leq 3 \), we will follow these steps: ### Step 1: Simplify the Integrand First, we simplify the integrand: \[ t(t^2 - 3t + 2) = t^3 - 3t^2 + 2t \] Thus, we can rewrite the function as: \[ f(x) = \int_1^x (t^3 - 3t^2 + 2t) \, dt \] ### Step 2: Compute the Integral Now, we compute the integral: \[ f(x) = \int_1^x t^3 \, dt - 3 \int_1^x t^2 \, dt + 2 \int_1^x t \, dt \] Calculating each integral separately: 1. \(\int t^3 \, dt = \frac{t^4}{4}\) 2. \(\int t^2 \, dt = \frac{t^3}{3}\) 3. \(\int t \, dt = \frac{t^2}{2}\) Now, substituting the limits: \[ f(x) = \left[ \frac{t^4}{4} \right]_1^x - 3 \left[ \frac{t^3}{3} \right]_1^x + 2 \left[ \frac{t^2}{2} \right]_1^x \] Calculating each term: 1. \(\frac{x^4}{4} - \frac{1^4}{4} = \frac{x^4}{4} - \frac{1}{4}\) 2. \(-3\left(\frac{x^3}{3} - \frac{1^3}{3}\right) = - (x^3 - 1) = -x^3 + 1\) 3. \(2\left(\frac{x^2}{2} - \frac{1^2}{2}\right) = (x^2 - 1)\) Combining these results gives: \[ f(x) = \frac{x^4}{4} - \frac{1}{4} - x^3 + 1 + x^2 - 1 \] Simplifying further: \[ f(x) = \frac{x^4}{4} - x^3 + x^2 - \frac{1}{4} \] ### Step 3: Find the Derivative Next, we find the derivative \( f'(x) \): \[ f'(x) = x^3 - 3x^2 + 2x \] ### Step 4: Analyze the Critical Points To find the critical points, we set \( f'(x) = 0 \): \[ x^3 - 3x^2 + 2x = 0 \] Factoring out \( x \): \[ x(x^2 - 3x + 2) = 0 \] This gives us: \[ x = 0 \quad \text{or} \quad x^2 - 3x + 2 = 0 \] Factoring the quadratic: \[ (x-1)(x-2) = 0 \implies x = 1, 2 \] ### Step 5: Evaluate \( f(x) \) at Critical Points and Endpoints We evaluate \( f(x) \) at \( x = 1, 2, 3 \): 1. \( f(1) = 0 \) 2. \( f(2) = \int_1^2 t(t^2 - 3t + 2) dt \) - Calculate \( f(2) \): \[ f(2) = \int_1^2 (t^3 - 3t^2 + 2t) dt = \left[ \frac{t^4}{4} - t^3 + t^2 \right]_1^2 \] - Evaluating gives: \[ f(2) = \left( \frac{16}{4} - 8 + 4 \right) - \left( \frac{1}{4} - 1 + 1 \right) = 4 - 8 + 4 - \left( \frac{1}{4} \right) = 0 - \frac{1}{4} = -\frac{1}{4} \] 3. \( f(3) = \int_1^3 t(t^2 - 3t + 2) dt \) - Calculate \( f(3) \): \[ f(3) = \left[ \frac{t^4}{4} - t^3 + t^2 \right]_1^3 \] - Evaluating gives: \[ f(3) = \left( \frac{81}{4} - 27 + 9 \right) - \left( \frac{1}{4} - 1 + 1 \right) = \frac{81}{4} - 27 + 9 - \left( \frac{1}{4} \right) \] - Simplifying: \[ = \frac{81}{4} - \frac{108}{4} + \frac{36}{4} - \frac{1}{4} = \frac{81 - 108 + 36 - 1}{4} = \frac{8}{4} = 2 \] ### Step 6: Determine the Range Now we have: - \( f(1) = 0 \) - \( f(2) = -\frac{1}{4} \) - \( f(3) = 2 \) The minimum value is \( -\frac{1}{4} \) and the maximum value is \( 2 \). Therefore, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left[-\frac{1}{4}, 2\right] \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f(x) is a real valued function defined by f(x)=x^(2)+x^(2) int_(-1)^(1) tf(t) dt+x^(3) int_(-1)^(1)f(t) dt then which of the following hold (s) good?

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_1^t f(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be definded as : F(x)=int_(1)^(x)t^2 g(t)dt, where g(t) = int_(1)^(t)f(u)du. Then for the function F, the point x=1 is

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_3^x1/(sqrt(t^4+3t^2+13))dt then g^1(0)=

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  13. Let f(x) be an odd continuous function which is periodic with period...

    Text Solution

    |

  14. Let f(x) be a function defined by f(x)=int1^xt(t^2-3t+2)dt,1<=x<=3 The...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |