Home
Class 12
MATHS
Consider the function defined on [0,1] r...

Consider the function defined on `[0,1] rarr R , f(x) =(sinx- xcosx)/(x^(2)), if x ne 0 and f(0) =0`
`int _(0)^(1)f(x)` is equal to

A

A. `1- sin (1)`

B

B. `sin (1)-1`

C

C. ` sin (1)`

D

D. `- sin(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 f(x) \, dx \) where \( f(x) = \frac{\sin x - x \cos x}{x^2} \) for \( x \neq 0 \) and \( f(0) = 0 \), we can break down the problem step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int_0^1 f(x) \, dx = \int_0^1 \frac{\sin x - x \cos x}{x^2} \, dx \] ### Step 2: Split the Integral We can split the integral into two parts: \[ \int_0^1 f(x) \, dx = \int_0^1 \frac{\sin x}{x^2} \, dx - \int_0^1 \frac{\cos x}{x} \, dx \] ### Step 3: Use Integration by Parts on the First Integral For the first integral \( \int_0^1 \frac{\sin x}{x^2} \, dx \), we will use integration by parts. Let: - \( u = \sin x \) (thus \( du = \cos x \, dx \)) - \( dv = \frac{1}{x^2} \, dx \) (thus \( v = -\frac{1}{x} \)) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int_0^1 \frac{\sin x}{x^2} \, dx = \left[-\frac{\sin x}{x}\right]_0^1 + \int_0^1 \frac{\cos x}{x} \, dx \] ### Step 4: Evaluate the Boundary Terms Evaluating the boundary terms: - At \( x = 1 \): \( -\frac{\sin(1)}{1} = -\sin(1) \) - At \( x = 0 \): We need to find the limit: \[ \lim_{x \to 0} -\frac{\sin x}{x} = -1 \quad \text{(using } \lim_{x \to 0} \frac{\sin x}{x} = 1\text{)} \] Thus, we have: \[ \left[-\frac{\sin x}{x}\right]_0^1 = -\sin(1) + 1 \] ### Step 5: Combine the Results Now substituting back into our integral: \[ \int_0^1 f(x) \, dx = (-\sin(1) + 1) + \int_0^1 \frac{\cos x}{x} \, dx - \int_0^1 \frac{\cos x}{x} \, dx \] The two \( \int_0^1 \frac{\cos x}{x} \, dx \) terms cancel each other out. ### Step 6: Final Result Thus, we find: \[ \int_0^1 f(x) \, dx = 1 - \sin(1) \] ### Final Answer The value of the integral \( \int_0^1 f(x) \, dx \) is: \[ \boxed{1 - \sin(1)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is one one or many one

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

Equation of normal drawn to the graph of the function defined as f(x) = (sinx^2)/x , x !=0 and f(0) =0, at the origin.

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. The length of the subtangent of the curve y= f (x ) at x=1//2 is:

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then The number of points of intersection of f (x) and g (x) is/are:

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  13. Let f(x) be an odd continuous function which is periodic with period...

    Text Solution

    |

  14. Let f(x) be a function defined by f(x)=int1^xt(t^2-3t+2)dt,1<=x<=3 The...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |