Home
Class 12
MATHS
int(-4)^(4) (sin^(-1)( sinx)+ cos^(-1)(c...

`int_(-4)^(4) (sin^(-1)( sinx)+ cos^(-1)(cos x))/((1+x^(2))(1+[(x^(2))/(17)])) dx= log (((1+pi^(2)))/sqrt(a)) `
`bpi" tan"^(-1)((c-pi)/(1+c pi))` (where, [.] denotes greatest inteher function), then the number of ways in which `a-(2b+c)` distinct object can distributed among `(a-5)/(c)` persons equally , is

A

`(9!)/((3!)^(3))`

B

`(12!)/((140^(3))`

C

`(15!)/((5!)^(3))`

D

`(10!)/((6!)^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral and find the values of \( a \), \( b \), and \( c \), we will follow these steps: ### Step 1: Evaluate the Integral We need to evaluate the integral: \[ I = \int_{-4}^{4} \frac{\sin^{-1}(\sin x) + \cos^{-1}(\cos x)}{(1+x^2)\left(1+\left\lfloor \frac{x^2}{17} \right\rfloor\right)} \, dx \] ### Step 2: Analyze the Greatest Integer Function Since \( x \) varies from \(-4\) to \(4\), \( x^2 \) varies from \(0\) to \(16\). Therefore, \( \left\lfloor \frac{x^2}{17} \right\rfloor = 0 \) for all \( x \) in this range. Thus, the integral simplifies to: \[ I = \int_{-4}^{4} \frac{\sin^{-1}(\sin x) + \cos^{-1}(\cos x)}{1+x^2} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int_{-4}^{4} \frac{\sin^{-1}(\sin x)}{1+x^2} \, dx + \int_{-4}^{4} \frac{\cos^{-1}(\cos x)}{1+x^2} \, dx \] ### Step 4: Evaluate Each Integral 1. **For \( \sin^{-1}(\sin x) \)**: - This function is odd, so: \[ \int_{-4}^{4} \frac{\sin^{-1}(\sin x)}{1+x^2} \, dx = 0 \] 2. **For \( \cos^{-1}(\cos x) \)**: - We need to evaluate: \[ \int_{-4}^{4} \frac{\cos^{-1}(\cos x)}{1+x^2} \, dx \] - Note that \( \cos^{-1}(\cos x) \) is periodic and symmetric. We can break it into two intervals: \[ \int_{0}^{\pi} \frac{x}{1+x^2} \, dx + \int_{\pi}^{4} \frac{2\pi - x}{1+x^2} \, dx \] ### Step 5: Evaluate the First Integral For \( \int_{0}^{\pi} \frac{x}{1+x^2} \, dx \): Using integration by parts, let \( u = x \) and \( dv = \frac{dx}{1+x^2} \): \[ du = dx, \quad v = \tan^{-1}(x) \] Thus, \[ \int_{0}^{\pi} \frac{x}{1+x^2} \, dx = \left[ x \tan^{-1}(x) \right]_{0}^{\pi} - \int_{0}^{\pi} \tan^{-1}(x) \, dx \] ### Step 6: Evaluate the Second Integral For \( \int_{\pi}^{4} \frac{2\pi - x}{1+x^2} \, dx \): This can be evaluated similarly, leading to: \[ \int_{\pi}^{4} \frac{2\pi - x}{1+x^2} \, dx = 2\pi \tan^{-1}(4) - \int_{\pi}^{4} \tan^{-1}(x) \, dx \] ### Step 7: Combine Results Combine the results from both integrals to find \( I \). ### Step 8: Comparing with Given Expression After evaluating \( I \), we compare it with: \[ \log\left(\frac{1+\pi^2}{\sqrt{a}}\right) + b\pi \tan^{-1}\left(\frac{c-\pi}{1+c\pi}\right) \] From this, we can determine \( a \), \( b \), and \( c \). ### Step 9: Calculate \( a - 2b + c \) Using the values of \( a \), \( b \), and \( c \) obtained from the comparison, calculate \( a - 2b + c \). ### Step 10: Distributing Objects Finally, we need to find the number of ways to distribute \( a - 2b + c \) distinct objects among \( \frac{a-5}{c} \) persons equally: \[ \text{Number of ways} = \frac{(a - 2b + c)!}{\left(\frac{a-5}{c}\right)!^{\frac{a-2b+c}{\frac{a-5}{c}}}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of I=int_(-pi//2)^(pi//2) (cos x dx )/(1+2[ sin^(-1)(sin x)]) (where ,[.] denotes greatest integer function ) is …

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

The value of int_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is (a)1 (b) 1//2 (c) 2 (d) none of these

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. Let f(x)=x^(2) +ax + b and the only solution of the equation f(x)= mi...

    Text Solution

    |

  2. If int(pi//3)^(x)sqrt((3-sin^(2)t))dt+int(0)^(y) cos tdt=0 then evalua...

    Text Solution

    |

  3. int(-4)^(4) (sin^(-1)( sinx)+ cos^(-1)(cos x))/((1+x^(2))(1+[(x^(2))/(...

    Text Solution

    |

  4. The value of the definite integral int (0)^(infty) (dx)/((1+x^(a))(1...

    Text Solution

    |

  5. The value of the definite integral overset(3pi//4)underset(0)int(1+x)s...

    Text Solution

    |

  6. Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then ...

    Text Solution

    |

  7. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  8. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  9. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  10. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  11. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  12. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  13. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  14. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  15. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  16. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  17. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  18. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  19. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  20. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |