Home
Class 12
MATHS
If f(x) =[ sin ^(-1)(sin 2x )] (where, [...

If `f(x) =[ sin ^(-1)(sin 2x )]` (where, [] denotes the greatest integer function ), then

A

`int_(0)^(pi//2) f(x) dx=(pi)/(2) - sin ^(-1)(sin 1)`

B

`f(x)` is periodic with period `pi`

C

`underset(x rarr(pi)/(2))(lim) f(x)=-1`

D

None of thses

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \lfloor \sin^{-1}(\sin(2x)) \rfloor \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function. ### Step 1: Understanding the function The function \( \sin^{-1}(\sin(2x)) \) gives us the angle whose sine is \( \sin(2x) \). The output of \( \sin^{-1} \) is restricted to the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). ### Step 2: Determine the range of \( 2x \) Since \( 2x \) can take values from \( 0 \) to \( \pi \) as \( x \) varies from \( 0 \) to \( \frac{\pi}{2} \), we need to consider the periodic nature of the sine function. ### Step 3: Analyze the output of \( \sin^{-1}(\sin(2x)) \) 1. For \( 0 \leq 2x \leq \frac{\pi}{2} \) (which corresponds to \( 0 \leq x \leq \frac{\pi}{4} \)): - Here, \( \sin^{-1}(\sin(2x)) = 2x \). 2. For \( \frac{\pi}{2} < 2x < \pi \) (which corresponds to \( \frac{\pi}{4} < x < \frac{\pi}{2} \)): - In this range, \( \sin(2x) \) will be positive, but \( \sin^{-1} \) will yield \( 2x - \pi \) because \( \sin^{-1} \) takes the principal value in \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). ### Step 4: Applying the greatest integer function - For \( 0 \leq x \leq \frac{\pi}{4} \): \[ f(x) = \lfloor 2x \rfloor \] Since \( 2x \) ranges from \( 0 \) to \( \frac{\pi}{2} \) (approximately \( 1.57 \)), \( \lfloor 2x \rfloor \) will be \( 0 \) for \( 0 \leq x < \frac{1}{2} \) and \( 1 \) for \( \frac{1}{2} \leq x < \frac{\pi}{4} \). - For \( \frac{\pi}{4} < x < \frac{\pi}{2} \): \[ f(x) = \lfloor 2x - \pi \rfloor \] Here, \( 2x \) ranges from \( \frac{\pi}{2} \) to \( \pi \) (approximately \( 3.14 \)), so \( 2x - \pi \) will range from \( -\frac{\pi}{2} \) to \( 0 \). Thus, \( \lfloor 2x - \pi \rfloor \) will be \( -1 \) for \( \frac{\pi}{4} < x < \frac{\pi}{2} \). ### Conclusion The function \( f(x) \) can be summarized as: - \( f(x) = 0 \) for \( 0 \leq x < \frac{1}{2} \) - \( f(x) = 1 \) for \( \frac{1}{2} \leq x < \frac{\pi}{4} \) - \( f(x) = -1 \) for \( \frac{\pi}{4} < x < \frac{\pi}{2} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[x] sin ((pi)/([x+1])) , where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x)=sin([x]pi)/(x^2+x+1) where [.] denotes the greatest integer function, then (A) f is one-one (B) f is not one-one and not constant (C) f is a constant function (D) none of these

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]