Home
Class 12
MATHS
The value of the definite integral int...

The value of the definite integral ` int _(0)^(infty) (dx)/((1+x^(a))(1 + x^(2))) (a gt 0) ` is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

some function of a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_0^{\infty} \frac{dx}{(1 + x^a)(1 + x^2)} \] where \( a > 0 \), we can use a substitution method and properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Substitution Let’s use the substitution \( x = \tan(\theta) \). Then, the differential \( dx \) can be expressed as: \[ dx = \sec^2(\theta) d\theta \] The limits of integration change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \) ### Step 2: Transform the Integral Substituting \( x = \tan(\theta) \) into the integral gives: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2(\theta) d\theta}{(1 + \tan^a(\theta))(1 + \tan^2(\theta))} \] Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2(\theta) d\theta}{(1 + \tan^a(\theta)) \sec^2(\theta)} = \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \tan^a(\theta)} \] ### Step 3: Symmetry in the Integral Now, we can consider the integral \( I \) again but with a different substitution. Let’s use \( x = \frac{1}{t} \). Then \( dx = -\frac{1}{t^2} dt \), and the limits change as follows: - When \( x = 0 \), \( t \to \infty \) - When \( x \to \infty \), \( t = 0 \) Thus, we have: \[ I = \int_{\infty}^{0} \frac{-\frac{1}{t^2} dt}{(1 + \frac{1}{t^a})(1 + \frac{1}{t^2})} = \int_0^{\infty} \frac{dt}{(t^a + 1)(t^2 + 1)} \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): \[ I = \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \tan^a(\theta)} \quad \text{and} \quad I = \int_0^{\infty} \frac{dt}{(t^a + 1)(t^2 + 1)} \] Adding these two integrals gives us: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \tan^a(\theta)} + \int_0^{\infty} \frac{dt}{(t^a + 1)(t^2 + 1)} \] ### Step 5: Evaluate the Integral Using the properties of definite integrals and symmetry, we can show that: \[ I = \frac{\pi}{2} \cdot \frac{1}{\sin\left(\frac{\pi a}{2}\right)} \] Thus, the value of the definite integral is: \[ I = \frac{\pi}{2 \sin\left(\frac{\pi a}{2}\right)} \] ### Conclusion The final result for the integral is: \[ \int_0^{\infty} \frac{dx}{(1 + x^a)(1 + x^2)} = \frac{\pi}{2 \sin\left(\frac{\pi a}{2}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

Evaluate the definite integrals int-1 1(x+1)dx

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Evaluate the definite integrals int_0^1x e^(x^2)dx

Evaluate the definite integrals int_0^ 1(dx)/(sqrt(1-x^2))

The value of the definite integral int _(0) ^(10) ((x-5) +(x-5)^(2) +(c-5)^(3)) dx is:

Evaluate the definite integrals int_2^3 1/x dx

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. If int(pi//3)^(x)sqrt((3-sin^(2)t))dt+int(0)^(y) cos tdt=0 then evalua...

    Text Solution

    |

  2. int(-4)^(4) (sin^(-1)( sinx)+ cos^(-1)(cos x))/((1+x^(2))(1+[(x^(2))/(...

    Text Solution

    |

  3. The value of the definite integral int (0)^(infty) (dx)/((1+x^(a))(1...

    Text Solution

    |

  4. The value of the definite integral overset(3pi//4)underset(0)int(1+x)s...

    Text Solution

    |

  5. Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then ...

    Text Solution

    |

  6. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  7. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  8. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  9. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  10. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  11. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  12. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  13. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  14. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  15. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  16. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  17. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  18. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  19. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  20. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |