Home
Class 12
MATHS
The value of the definite integral overs...

The value of the definite integral `overset(3pi//4)underset(0)int(1+x)sin x+(1-x) cos x)dx` is

A

`2 tan (3pi)/(8)`

B

`2 tan(pi)/(4)`

C

`2 tan (pi)/(8)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{0}^{\frac{3\pi}{4}} (1+x) \sin x + (1-x) \cos x \, dx, \] we can break it down into two separate integrals: \[ \int_{0}^{\frac{3\pi}{4}} (1+x) \sin x \, dx + \int_{0}^{\frac{3\pi}{4}} (1-x) \cos x \, dx. \] ### Step 1: Evaluate the first integral Let \[ I_1 = \int_{0}^{\frac{3\pi}{4}} (1+x) \sin x \, dx. \] Using integration by parts, we let - \( u = 1+x \) (hence \( du = dx \)) - \( dv = \sin x \, dx \) (hence \( v = -\cos x \)) Applying integration by parts: \[ I_1 = \left[ -(1+x) \cos x \right]_{0}^{\frac{3\pi}{4}} + \int_{0}^{\frac{3\pi}{4}} \cos x \, dx. \] Now, we compute: \[ \left[ -(1+x) \cos x \right]_{0}^{\frac{3\pi}{4}} = -\left(1+\frac{3\pi}{4}\right) \cos\left(\frac{3\pi}{4}\right) + (1+0) \cos(0). \] Calculating the values: - \(\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}\) - \(\cos(0) = 1\) Thus, \[ = -\left(1+\frac{3\pi}{4}\right)\left(-\frac{1}{\sqrt{2}}\right) + 1 = \frac{1+\frac{3\pi}{4}}{\sqrt{2}} + 1. \] Now, we compute the integral \(\int_{0}^{\frac{3\pi}{4}} \cos x \, dx\): \[ \int \cos x \, dx = \sin x \quad \Rightarrow \quad \left[ \sin x \right]_{0}^{\frac{3\pi}{4}} = \sin\left(\frac{3\pi}{4}\right) - \sin(0) = \frac{1}{\sqrt{2}} - 0 = \frac{1}{\sqrt{2}}. \] Thus, \[ I_1 = \frac{1+\frac{3\pi}{4}}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2+\frac{3\pi}{4}}{\sqrt{2}}. \] ### Step 2: Evaluate the second integral Let \[ I_2 = \int_{0}^{\frac{3\pi}{4}} (1-x) \cos x \, dx. \] Using integration by parts again, we let - \( u = 1-x \) (hence \( du = -dx \)) - \( dv = \cos x \, dx \) (hence \( v = \sin x \)) Applying integration by parts: \[ I_2 = \left[ (1-x) \sin x \right]_{0}^{\frac{3\pi}{4}} - \int_{0}^{\frac{3\pi}{4}} \sin x \, dx. \] Now, we compute: \[ \left[ (1-x) \sin x \right]_{0}^{\frac{3\pi}{4}} = \left(1-\frac{3\pi}{4}\right) \sin\left(\frac{3\pi}{4}\right) - (1-0) \sin(0). \] Calculating the values: - \(\sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}\) - \(\sin(0) = 0\) Thus, \[ = \left(1-\frac{3\pi}{4}\right) \frac{1}{\sqrt{2}} - 0 = \frac{1-\frac{3\pi}{4}}{\sqrt{2}}. \] Now, we compute the integral \(\int_{0}^{\frac{3\pi}{4}} \sin x \, dx\): \[ \int \sin x \, dx = -\cos x \quad \Rightarrow \quad \left[ -\cos x \right]_{0}^{\frac{3\pi}{4}} = -\left(-\frac{1}{\sqrt{2}} - (-1)\right) = 1 - \frac{1}{\sqrt{2}}. \] Thus, \[ I_2 = \frac{1-\frac{3\pi}{4}}{\sqrt{2}} - \left(1 - \frac{1}{\sqrt{2}}\right) = \frac{1-\frac{3\pi}{4}}{\sqrt{2}} - 1 + \frac{1}{\sqrt{2}} = \frac{2 - \frac{3\pi}{4}}{\sqrt{2}} - 1. \] ### Step 3: Combine the results Now, adding \(I_1\) and \(I_2\): \[ I = I_1 + I_2 = \left(\frac{2+\frac{3\pi}{4}}{\sqrt{2}}\right) + \left(\frac{2 - \frac{3\pi}{4}}{\sqrt{2}} - 1\right). \] This simplifies to: \[ = \frac{4}{\sqrt{2}} - 1 = 2\sqrt{2} - 1. \] ### Final Answer Thus, the value of the definite integral is: \[ \boxed{2\sqrt{2} - 1}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)dx (k is an even integer) is equal to

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//3))/(x^(4))dx is

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

The value of the integral overset(2)underset(0)int (log(x^(2)+2))/((x+2)^(2)) , dx is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. int(-4)^(4) (sin^(-1)( sinx)+ cos^(-1)(cos x))/((1+x^(2))(1+[(x^(2))/(...

    Text Solution

    |

  2. The value of the definite integral int (0)^(infty) (dx)/((1+x^(a))(1...

    Text Solution

    |

  3. The value of the definite integral overset(3pi//4)underset(0)int(1+x)s...

    Text Solution

    |

  4. Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then ...

    Text Solution

    |

  5. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  6. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  7. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  8. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  9. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  10. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  11. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  12. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  13. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  14. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  15. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  16. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  17. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  18. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  19. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  20. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |