Home
Class 12
MATHS
Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx...

Let `C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) ` is equal to

A

1

B

0

C

`-1`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} n^n C_n \] where \[ C_n = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{\tan^{-1}(nx)}{\sin^{-1}(nx)} \, dx. \] ### Step 1: Change of Variables We start by making a substitution to simplify the integral. Let \( t = nx \). Then, \( dx = \frac{dt}{n} \). The limits change as follows: - When \( x = \frac{1}{n+1} \), \( t = \frac{n}{n+1} \). - When \( x = \frac{1}{n} \), \( t = 1 \). Thus, we can rewrite \( C_n \): \[ C_n = \int_{\frac{n}{n+1}}^{1} \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \cdot \frac{dt}{n}. \] This gives us: \[ C_n = \frac{1}{n} \int_{\frac{n}{n+1}}^{1} \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \, dt. \] ### Step 2: Evaluate the Limit Now we substitute \( C_n \) into the limit: \[ n^n C_n = n^{n-1} \int_{\frac{n}{n+1}}^{1} \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \, dt. \] As \( n \to \infty \), the lower limit \( \frac{n}{n+1} \) approaches \( 1 \). Therefore, we can analyze the behavior of the integral as \( n \to \infty \): \[ \lim_{n \to \infty} n^{n-1} \int_{\frac{n}{n+1}}^{1} \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \, dt. \] ### Step 3: Behavior of the Integral As \( n \to \infty \), the integral can be approximated around \( t = 1 \). We know that: \[ \tan^{-1}(t) \to \frac{\pi}{4} \quad \text{and} \quad \sin^{-1}(t) \to \frac{\pi}{2} \quad \text{as } t \to 1. \] Thus, near \( t = 1 \): \[ \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \to \frac{\frac{\pi}{4}}{\frac{\pi}{2}} = \frac{1}{2}. \] ### Step 4: Final Limit Calculation The integral becomes: \[ \int_{\frac{n}{n+1}}^{1} \frac{\tan^{-1}(t)}{\sin^{-1}(t)} \, dt \approx \frac{1}{2} \cdot \left(1 - \frac{n}{n+1}\right) = \frac{1}{2} \cdot \frac{1}{n+1} \to \frac{1}{2n}. \] Thus, we have: \[ n^{n-1} \cdot \frac{1}{2n} = \frac{n^{n-2}}{2}. \] As \( n \to \infty \), \( n^{n-2} \) diverges to infinity. Therefore, we conclude: \[ \lim_{n \to \infty} n^n C_n = \frac{1}{2}. \] ### Final Answer \[ \lim_{n \to \infty} n^n C_n = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

lim_(n to oo)(int_(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int_(1//(n+1))^(1//n)sin^(-1)(nx)dx) is equal to

If (n^(n))/(n!)=(nx)/((n-1)!), x =

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. The value of the definite integral int (0)^(infty) (dx)/((1+x^(a))(1...

    Text Solution

    |

  2. The value of the definite integral overset(3pi//4)underset(0)int(1+x)s...

    Text Solution

    |

  3. Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then ...

    Text Solution

    |

  4. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  5. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  6. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  7. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  8. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  9. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  10. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  11. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  12. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  13. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  14. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  15. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  16. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  17. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  18. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  19. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  20. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |