Home
Class 12
MATHS
If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[i...

If `[int_0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int_- 3^3(t^2sin2t)/(t^2+1)dt]x-2=0 (0 < alpha < pi)` then the value of x is

A

(a)`pm(sqrt(alpha )/(2 sin alpha))`

B

(b)`pmsqrt((2 sin alpha )/(alpha))`

C

(c)`pmsqrt(( alpha)/( sin alpha))`

D

(d)`pm2sqrt((sin alpha)/(alpha))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals and then solve the resulting quadratic equation. Let's break down the solution step by step. ### Step 1: Evaluate the first integral \( I_1 \) We have: \[ I_1 = \int_0^1 \frac{dt}{t^2 + 2t \cos \alpha + 1} \] This can be rewritten as: \[ I_1 = \int_0^1 \frac{dt}{(t + \cos \alpha)^2 + \sin^2 \alpha} \] This form is useful because it resembles the standard integral form for arctangent. ### Step 2: Use the substitution for the integral Using the substitution \( u = t + \cos \alpha \), we have \( du = dt \) and the limits change from \( t = 0 \) to \( t = 1 \) which gives \( u = \cos \alpha \) to \( u = 1 + \cos \alpha \). Thus, \[ I_1 = \int_{\cos \alpha}^{1 + \cos \alpha} \frac{du}{u^2 + \sin^2 \alpha} \] ### Step 3: Evaluate the integral The integral \( \int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) + C \). Here, \( a = \sin \alpha \): \[ I_1 = \frac{1}{\sin \alpha} \left[ \tan^{-1} \left( \frac{1 + \cos \alpha}{\sin \alpha} \right) - \tan^{-1} \left( \frac{\cos \alpha}{\sin \alpha} \right) \right] \] ### Step 4: Simplify \( I_1 \) Using the identity for the difference of arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] we can simplify this further. ### Step 5: Evaluate the second integral \( I_2 \) Next, we evaluate: \[ I_2 = \int_{-3}^{3} \frac{t^2 \sin 2t}{t^2 + 1} dt \] Since \( t^2 \sin 2t \) is an odd function, the integral over a symmetric interval around zero is zero: \[ I_2 = 0 \] ### Step 6: Set up the quadratic equation Now substituting \( I_1 \) and \( I_2 \) back into the equation: \[ I_1 x^2 - I_2 x - 2 = 0 \] This simplifies to: \[ I_1 x^2 - 2 = 0 \] ### Step 7: Solve for \( x \) From the equation, we get: \[ I_1 x^2 = 2 \implies x^2 = \frac{2}{I_1} \] Taking the square root gives: \[ x = \pm \sqrt{\frac{2}{I_1}} \] ### Step 8: Final expression for \( x \) Thus, the value of \( x \) is: \[ x = \pm \sqrt{\frac{2}{I_1}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x tf(t)dt+2, then

If int_0^1 (e^t dt)/(t+1)=a, then evaluate int_(b-1)^b (e^t dt)/(t-b-1)

Let A=int_0^1(e^t)/(t+1)dt , then the value of (int_0^1t e^t^2)/(t^2+1)dt A^2 (b) 1/2A (c) 2A (d) 1/2A^2

If int_0^1e^t/(t+1) dt=a , then int_(b-1)^b e^(-t)/(t-b-1) dt =

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. The value of the definite integral overset(3pi//4)underset(0)int(1+x)s...

    Text Solution

    |

  2. Let C(n)= int(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then ...

    Text Solution

    |

  3. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  4. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  5. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  6. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  7. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  8. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  9. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  10. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  11. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  12. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  13. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  14. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  15. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  16. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  17. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  18. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  19. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  20. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |