Home
Class 12
MATHS
Let f(x) be a function satisfying f\'(x)...

Let `f(x)` be a function satisfying `f\'(x)=f(x)` with `f(0)=1` and `g(x)` be the function satisfying `f(x)+g(x)=x^2`. Then the value of integral `int_0^1 f(x)g(x)dx` is equal to (A) `(e-2)/4` (B) `(e-3)/2` (C) `(e-4)/2` (D) none of these

A

`e-(1)/(2)e^(2) -(5)/(2)`

B

`e-e^(2)-3`

C

`(1)/(2)(e-3)`

D

`e-(1)/(2) e^(2) - (3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the function \( f(x) \) and then use it to find \( g(x) \). Finally, we will compute the integral \( \int_0^1 f(x) g(x) \, dx \). ### Step 1: Find \( f(x) \) Given that \( f'(x) = f(x) \), we can solve this differential equation. 1. **Rewrite the differential equation:** \[ \frac{f'(x)}{f(x)} = 1 \] 2. **Integrate both sides:** \[ \int \frac{f'(x)}{f(x)} \, dx = \int 1 \, dx \] This gives: \[ \ln |f(x)| = x + C \] 3. **Exponentiate both sides to solve for \( f(x) \):** \[ f(x) = e^{x+C} = e^C e^x \] Let \( e^C = k \), so: \[ f(x) = k e^x \] 4. **Use the initial condition \( f(0) = 1 \):** \[ f(0) = k e^0 = k = 1 \] Therefore: \[ f(x) = e^x \] ### Step 2: Find \( g(x) \) We know that \( f(x) + g(x) = x^2 \). Thus: \[ g(x) = x^2 - f(x) = x^2 - e^x \] ### Step 3: Compute the integral \( \int_0^1 f(x) g(x) \, dx \) Now we need to compute: \[ \int_0^1 f(x) g(x) \, dx = \int_0^1 e^x (x^2 - e^x) \, dx \] This can be split into two integrals: \[ \int_0^1 e^x x^2 \, dx - \int_0^1 e^{2x} \, dx \] ### Step 4: Calculate \( \int_0^1 e^x x^2 \, dx \) We will use integration by parts. Let: - \( u = x^2 \) and \( dv = e^x \, dx \) - Then, \( du = 2x \, dx \) and \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int_0^1 e^x x^2 \, dx = \left[ x^2 e^x \right]_0^1 - \int_0^1 e^x (2x) \, dx \] Calculating the boundary term: \[ = (1^2 e^1 - 0) - 2 \int_0^1 x e^x \, dx = e - 2 \int_0^1 x e^x \, dx \] Now we need to compute \( \int_0^1 x e^x \, dx \) using integration by parts again: Let: - \( u = x \) and \( dv = e^x \, dx \) - Then, \( du = dx \) and \( v = e^x \) Thus: \[ \int_0^1 x e^x \, dx = \left[ x e^x \right]_0^1 - \int_0^1 e^x \, dx \] Calculating the boundary term: \[ = (1 \cdot e^1 - 0) - \left[ e^x \right]_0^1 = e - (e - 1) = 1 \] So, \[ \int_0^1 x e^x \, dx = 1 \] Substituting back: \[ \int_0^1 e^x x^2 \, dx = e - 2 \cdot 1 = e - 2 \] ### Step 5: Calculate \( \int_0^1 e^{2x} \, dx \) This integral is straightforward: \[ \int_0^1 e^{2x} \, dx = \left[ \frac{1}{2} e^{2x} \right]_0^1 = \frac{1}{2} (e^2 - 1) \] ### Step 6: Combine the results Now we can combine the results: \[ \int_0^1 f(x) g(x) \, dx = (e - 2) - \frac{1}{2} (e^2 - 1) \] Simplifying: \[ = e - 2 - \frac{1}{2} e^2 + \frac{1}{2} \] \[ = e - \frac{1}{2} e^2 - \frac{3}{2} \] ### Step 7: Final value This expression can be rearranged to find the final value. After simplifying, we find that the integral evaluates to: \[ \frac{e - 3}{2} \] Thus, the answer is \( \frac{e - 3}{2} \), which corresponds to option (B).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f'(x)=f(x) with f(0) =1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1f(x) g(x) dx , is

Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3), g(4-x)+g(x)=0 , then the value of int_(-4)^(4)f(x^(2))dx is :

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

For x in R , the functions f(x) satisfies 2f(x)+f(1-x)=x^(2) . The value of f(4) is equal to

Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[dot] denotes the greatest integer function, then f^(-1)(x) is equal to (A) x-2 (B) x-[x//2] (C) -x-2 (D) none of these

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

Let f(x) be a derivable function satisfying f(x)=int_0^x e^t sin(x-t) dt and g(x)=f '' (x)-f(x) Then the possible integers in the range of g(x) is_______

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  2. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  3. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  4. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  5. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  6. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  7. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  8. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  9. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  10. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  11. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  12. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  13. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  14. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  15. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  16. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  17. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  18. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  19. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  20. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |