Home
Class 12
MATHS
Let f(x)=int0^g(x) dt/sqrt(1+t^2) where ...

Let `f(x)=int_0^g(x) dt/sqrt(1+t^2)` where `g(x) =int_0^cosx (1+sint^2) dt.` Also `h(x) =e^(-|x|)` and `l(x)=x^2 sin(1/x)` if `x != 0` and `l(0)=0` then `f'(pi/2)` equals:

A

(a) `l'(0)`

B

(b) `h'(0^(-))`

C

(c) `h'(0^(+))`

D

(d) `underset (x rarr 0 )(lim) (1- cos x) /(x sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the functions provided and compute the necessary derivatives. ### Step 1: Define the Functions We have: - \( f(x) = \int_0^{g(x)} \frac{dt}{\sqrt{1+t^2}} \) - \( g(x) = \int_0^{\cos x} (1 + \sin^2 t) \, dt \) - \( h(x) = e^{-|x|} \) - \( l(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \) ### Step 2: Compute \( g\left(\frac{\pi}{2}\right) \) First, we need to evaluate \( g\left(\frac{\pi}{2}\right) \): \[ g\left(\frac{\pi}{2}\right) = \int_0^{\cos\left(\frac{\pi}{2}\right)} (1 + \sin^2 t) \, dt = \int_0^0 (1 + \sin^2 t) \, dt = 0 \] ### Step 3: Compute \( g'(x) \) Using the Fundamental Theorem of Calculus: \[ g'(x) = \frac{d}{dx} \left( \int_0^{\cos x} (1 + \sin^2 t) \, dt \right) = (1 + \sin^2(\cos x)) \cdot (-\sin x) \] ### Step 4: Evaluate \( g'\left(\frac{\pi}{2}\right) \) Now, we evaluate \( g'\left(\frac{\pi}{2}\right) \): \[ g'\left(\frac{\pi}{2}\right) = (1 + \sin^2(0)) \cdot (-\sin\left(\frac{\pi}{2}\right)) = (1 + 0) \cdot (-1) = -1 \] ### Step 5: Compute \( f'(x) \) Using the Fundamental Theorem of Calculus again: \[ f'(x) = \frac{1}{\sqrt{1 + (g(x))^2}} \cdot g'(x) \] ### Step 6: Evaluate \( f'\left(\frac{\pi}{2}\right) \) Now we can evaluate \( f'\left(\frac{\pi}{2}\right) \): \[ f'\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{1 + (g\left(\frac{\pi}{2}\right))^2}} \cdot g'\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{1 + 0^2}} \cdot (-1) = 1 \cdot (-1) = -1 \] ### Step 7: Compare with Given Functions Now we need to find which of the given options equals \(-1\): 1. \( l'(0) \) 2. \( h'(0) \) 3. \(-h'(0)\) 4. \( \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \) ### Step 8: Compute \( h'(0) \) For \( h(x) = e^{-|x|} \): - For \( x > 0 \), \( h'(x) = -e^{-x} \) - For \( x < 0 \), \( h'(x) = e^{x} \) At \( x = 0 \): - Left-hand derivative: \( \lim_{x \to 0^-} h'(x) = e^{0} = 1 \) - Right-hand derivative: \( \lim_{x \to 0^+} h'(x) = -e^{0} = -1 \) Thus, \( h'(0) \) does not exist as left and right derivatives do not match. ### Step 9: Compute \( l'(0) \) Using the definition of the derivative: \[ l'(0) = \lim_{x \to 0} \frac{l(x) - l(0)}{x} = \lim_{x \to 0} \frac{x^2 \sin(1/x)}{x} = \lim_{x \to 0} x \sin(1/x) \] Since \( |\sin(1/x)| \leq 1 \), this limit approaches \( 0 \). ### Step 10: Compute the Limit For \( \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \): Using L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} = \frac{0}{0 + 0} = 0 \] ### Conclusion The only option that equals \(-1\) is \(-h'(0)\), which is \(-(-1) = 1\). Thus, we conclude: \[ f'\left(\frac{\pi}{2}\right) = -1 \] ### Final Answer The value of \( f'\left(\frac{\pi}{2}\right) \) equals \(-1\).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. Let f(x) =int-1^x e^(t^2) dt and h(x)=f(1+g(x)), where g (x) is define...

    Text Solution

    |

  2. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  3. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  4. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  5. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  6. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  7. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  8. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  9. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  10. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  11. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  12. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  13. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  14. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  15. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  16. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  17. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  18. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  19. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  20. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |