Home
Class 12
MATHS
For f(x) =x^(4) +|x|, let I(1)= int (0)^...

For `f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx` and `I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2))` has the value equal to

A

1

B

`1//2`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) defined as follows: 1. \( I_1 = \int_0^{\pi} f(\cos x) \, dx \) 2. \( I_2 = \int_0^{\frac{\pi}{2}} f(\sin x) \, dx \) where \( f(x) = x^4 + |x| \). ### Step 1: Analyze the function \( f(x) \) The function \( f(x) = x^4 + |x| \) is an even function because: - \( x^4 \) is even (i.e., \( f(-x) = (-x)^4 + |-x| = x^4 + |x| = f(x) \)). - \( |x| \) is also even. ### Step 2: Evaluate \( I_1 \) Using the property of even functions, we can transform \( I_1 \): \[ I_1 = \int_0^{\pi} f(\cos x) \, dx \] We can use the substitution \( x = \pi - t \), which gives \( dx = -dt \). Thus, we have: \[ I_1 = \int_{\pi}^{0} f(\cos(\pi - t)) (-dt) = \int_0^{\pi} f(-\cos t) \, dt \] Since \( f(x) \) is even, \( f(-\cos t) = f(\cos t) \). Therefore: \[ I_1 = \int_0^{\pi} f(\cos t) \, dt \] This shows that \( I_1 \) can be expressed as: \[ I_1 = 2 \int_0^{\frac{\pi}{2}} f(\cos x) \, dx \] ### Step 3: Evaluate \( I_2 \) Now we evaluate \( I_2 \): \[ I_2 = \int_0^{\frac{\pi}{2}} f(\sin x) \, dx \] ### Step 4: Relate \( I_1 \) and \( I_2 \) From the symmetry and properties of the sine and cosine functions, we can relate \( I_1 \) and \( I_2 \): \[ I_1 = 2 I_2 \] ### Step 5: Calculate \( \frac{I_1}{I_2} \) Now we can find the ratio: \[ \frac{I_1}{I_2} = \frac{2 I_2}{I_2} = 2 \] ### Final Answer Thus, the value of \( \frac{I_1}{I_2} \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be ...

    Text Solution

    |

  2. Let f(x)=int0^g(x) dt/sqrt(1+t^2) where g(x) =int0^cosx (1+sint^2) dt....

    Text Solution

    |

  3. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  4. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  5. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  6. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  7. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  8. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  9. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  10. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  11. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  12. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  13. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  14. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  15. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  16. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  17. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  18. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  19. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  20. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |