Home
Class 12
MATHS
Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x...

Let `I (a) =int_(0)^(pi) ((x)/(a)+ a sin x)^(2) dx` where `a` is positive real.
The value of `a` for which `I(a)` attains its minimum value is

A

(a) `sqrt(pisqrt((2)/(3)))`

B

(b) `sqrt(pisqrt((3)/(2)))`

C

(c) `sqrt((pi)/(16))`

D

(d) `sqrt((pi)/(13))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) for which the integral \[ I(a) = \int_0^{\pi} \left( \frac{x}{a} + a \sin x \right)^2 dx \] attains its minimum value. Let's break this down step by step. ### Step 1: Expand the integral We start by expanding the integrand: \[ I(a) = \int_0^{\pi} \left( \frac{x^2}{a^2} + 2 \frac{x}{a} (a \sin x) + (a \sin x)^2 \right) dx \] This simplifies to: \[ I(a) = \int_0^{\pi} \left( \frac{x^2}{a^2} + 2x \sin x + a^2 \sin^2 x \right) dx \] ### Step 2: Split the integral We can split the integral into three separate integrals: \[ I(a) = \frac{1}{a^2} \int_0^{\pi} x^2 dx + 2 \int_0^{\pi} x \sin x \, dx + a^2 \int_0^{\pi} \sin^2 x \, dx \] ### Step 3: Evaluate the integrals 1. **First integral**: \[ \int_0^{\pi} x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^{\pi} = \frac{\pi^3}{3} \] 2. **Second integral**: We use integration by parts for \( \int_0^{\pi} x \sin x \, dx \): Let \( u = x \) and \( dv = \sin x \, dx \). Then \( du = dx \) and \( v = -\cos x \). Using integration by parts: \[ \int_0^{\pi} x \sin x \, dx = \left[ -x \cos x \right]_0^{\pi} + \int_0^{\pi} \cos x \, dx = 0 + \left[ \sin x \right]_0^{\pi} = 0 \] So, \[ \int_0^{\pi} x \sin x \, dx = 0 \] 3. **Third integral**: Using the identity \( \sin^2 x = \frac{1 - \cos 2x}{2} \): \[ \int_0^{\pi} \sin^2 x \, dx = \int_0^{\pi} \frac{1 - \cos 2x}{2} \, dx = \frac{\pi}{2} \] ### Step 4: Substitute back into \( I(a) \) Now substituting back into \( I(a) \): \[ I(a) = \frac{1}{a^2} \cdot \frac{\pi^3}{3} + 0 + a^2 \cdot \frac{\pi}{2} \] This simplifies to: \[ I(a) = \frac{\pi^3}{3a^2} + \frac{\pi a^2}{2} \] ### Step 5: Find the minimum value of \( I(a) \) To find the minimum, we differentiate \( I(a) \) with respect to \( a \) and set it to zero: \[ \frac{dI}{da} = -\frac{2\pi^3}{3a^3} + \pi a = 0 \] Multiplying through by \( 3a^3 \): \[ -2\pi^3 + 3\pi a^4 = 0 \] This gives: \[ 3a^4 = 2\pi^3 \implies a^4 = \frac{2\pi^3}{3} \implies a = \left( \frac{2\pi^3}{3} \right)^{1/4} \] ### Step 6: Simplify \( a \) To express \( a \) in a simpler form: \[ a = \sqrt{\frac{2\pi}{3}} \cdot \sqrt[4]{\pi} \] Thus, we find: \[ a = \sqrt{\frac{2\pi}{3}} \cdot \sqrt{\pi} = \sqrt{\frac{2\pi^2}{3}} = \frac{\sqrt{2} \cdot \pi^{1/2}}{\sqrt{3}} \] The final answer is: \[ a = \sqrt{\frac{2\pi}{3}} \] ### Conclusion The value of \( a \) for which \( I(a) \) attains its minimum value is: \[ \sqrt{\frac{2\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(1+a^(2)sin^(2)x) has the value

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I = int_(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite real number, then

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |