Home
Class 12
MATHS
The set of value of 'a' which satisfy t...

The set of value of 'a' which satisfy the equation `int_0^2(t-log_2a)dt=log_2(4/(a^2))` is

A

`a in R`

B

`a in R^(+)`

C

`a lt2`

D

`a gt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_0^2 \left(t - \log_2 a\right) dt = \log_2\left(\frac{4}{a^2}\right), \] we will break it down step by step. ### Step 1: Evaluate the Integral We start by evaluating the left-hand side integral: \[ \int_0^2 \left(t - \log_2 a\right) dt = \int_0^2 t \, dt - \int_0^2 \log_2 a \, dt. \] The first integral, \(\int_0^2 t \, dt\), can be computed as follows: \[ \int_0^2 t \, dt = \left[\frac{t^2}{2}\right]_0^2 = \frac{2^2}{2} - \frac{0^2}{2} = \frac{4}{2} = 2. \] The second integral, \(\int_0^2 \log_2 a \, dt\), is simply \(\log_2 a\) multiplied by the length of the interval (which is 2): \[ \int_0^2 \log_2 a \, dt = 2 \log_2 a. \] Putting it all together, we have: \[ \int_0^2 \left(t - \log_2 a\right) dt = 2 - 2 \log_2 a. \] ### Step 2: Set the Integral Equal to the Right-Hand Side Now we set the left-hand side equal to the right-hand side: \[ 2 - 2 \log_2 a = \log_2\left(\frac{4}{a^2}\right). \] ### Step 3: Simplify the Right-Hand Side Next, we simplify the right-hand side: \[ \log_2\left(\frac{4}{a^2}\right) = \log_2 4 - \log_2 a^2 = 2 - 2 \log_2 a. \] ### Step 4: Equate Both Sides Now we have: \[ 2 - 2 \log_2 a = 2 - 2 \log_2 a. \] This equation is always true for any value of \(a\) that makes \(\log_2 a\) defined, which means \(a\) must be positive. ### Step 5: Conclusion Thus, the set of values of \(a\) that satisfy the equation is: \[ a > 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_0^(2) (x-log_(2)a)dx=2 log((2)/(a)) , if

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

The set of all x satisfying the equation x^(log)_3x^2+((log)_3x)^(2-10)=1/(x^2)i s 1 (b) 2 (c) 3 (d) 0

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |